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Steady-State Operating Point (Trimming)

In this section...

“What Is a Steady-State Operating Point?” on page 1-2
“What Is an Operating Point in Simulink Control Design?” on page 1-3
“Simulink Model States Included in Operating Point Object” on page 1-4
“Advantages of Using Simulink Control Design vs. Simulink Operating Point Search” on
page 1-5

What Is a Steady-State Operating Point?

An operating point of a dynamic system defines the overall state of this system at a
specific time. For example, in a car engine model, variables such as engine speed, throttle
angle, engine temperature, and surrounding atmospheric conditions typically describe
the operating point.

A steady-state operating point of the model, also called equilibrium or trim condition,
includes state variables that do not change with time.

A model might have several steady-state operating points. For example, a hanging
pendulum has two steady-state operating points. A stable steady-state operating point
occurs when a pendulum hangs straight down. That is, the pendulum position does not
change with time. When the pendulum position deviates slightly, the pendulum always
returns to equilibrium; small changes in the operating point do not cause the system to
leave the region of good approximation around the equilibrium value.

An unstable steady-state operating point occurs when a pendulum points upward. As long
as the pendulum points exactly upward, it remains in equilibrium. However, when the
pendulum deviates slightly from this position, it swings downward and the operating
point leaves the region around the equilibrium value.

When using optimization search to compute operating points for a nonlinear system, your
initial guesses for the states and input levels must be in the neighborhood of the desired
operating point to ensure convergence.

When linearizing a model with multiple steady-state operating points, it is important to
have the right operating point. For example, linearizing a pendulum model around the
stable steady-state operating point produces a stable linear model, whereas linearizing
around the unstable steady-state operating point produces an unstable linear model.
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What Is an Operating Point in Simulink Control Design?

The operating point of a model consists of the model initial states and root-level input
signals.

For example, this Simulink® model has an operating point that consists of two variables:

• Root input level set to 1
• Integrator block state set to 5

The next table summarizes the operating point values of this Simulink model.

Block Block Input Block Operation Block Output

Integrator     1
Square 5, set by the initial

conditionx0 = 5 of
the Integrator block

squares 25

Sum 25 from Square
block, 1 from
Constant block

sums 26

Gain 26 multiplies by 3 78

The next block diagram shows how the model input and the initial state of the Integrator
block propagate through the model during simulation.
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If your model initial states and inputs already represent the desired steady-state
operating conditions, you can use this operating point for linearization or control design.

Examples and How To

• “Steady-State Operating Points from State Specifications” on page 1-15
• “Steady-State Operating Point to Meet Output Specification” on page 1-20

More About

“Simulink Model States Included in Operating Point Object” on page 1-4

Simulink Model States Included in Operating Point Object

The operating point object in Simulink Control Design™ includes the tunable states in
your Simulink model.

The operating point object excludes states of blocks that have internal representation,
such as Backlash, Memory, and Stateflow blocks.

States that are excluded from the operating point object cannot be used in trimming
computations. These states cannot be captured with operspec or operpoint or written
with initopspec. Such states are also excluded from operating point displays or
computations using Linear Analysis Tool. The following table summarizes which states
are included and which are excluded from the operating point object.

State Type Included in Operating Point?

Double-precision real-valued states . Yes
States whose value is not of type
double. For example, complex-valued
states, single-type states, int8-type
states.

No

States from root-level inport blocks with
double-precision real-valued inputs.

Yes

Internal state representations that
impact block output, such as states

No (see “Handling Blocks with Internal State
Representation” on page 1-44)
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State Type Included in Operating Point?

in Backlash, Memory, or Stateflow®

blocks.
States that belong to a Unit Delay block
whose input is a bus signal.

No

More About

• “Handling Blocks with Internal State Representation” on page 1-44
• “Steady-State Operating Point (Trimming)” on page 1-2

Advantages of Using Simulink Control Design vs. Simulink Operating
Point Search

Simulink provides trim for steady-state operating point search. How is trim different
from findop in Simulink Control Design for performing an optimization-based operating
point search?

Simulink Control Design operating point search provides these advantages to using
trim:

 Simulink Control Design
Operating Point Search

Simulink Operating Point Search

Graphical-user
interface

Yes No
Only trim is available.

Multiple optimization
methods

Yes No
Only one optimization method

Constrain state, input,
and output variables
using upper and lower
bounds

Yes No

Specify the output
value of blocks that
are not connected to
root model outports

Yes No
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 Simulink Control Design
Operating Point Search

Simulink Operating Point Search

Steady-operating
points for models with
discrete states

Yes No

Model reference
support

Yes No

SimMechanics™
integration

Yes No
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View and Modify Operating Points

In this section...

“View Model Initial Condition in Linear Analysis Tool” on page 1-7
“Modify Operating Point in Linear Analysis Tool” on page 1-8
“View and Modify Operating Point Object (MATLAB Code)” on page 1-9

View Model Initial Condition in Linear Analysis Tool

This example shows how to view the model initial condition in the Linear Analysis Tool.

1 Open the Simulink model.

sys = 'magball';

open_system(sys)

2 In the Simulink Editor, select Analysis > Control Design > Linear Analysis.

The Linear Analysis Tool for the model opens.
3

Click  in the Exact Linearization tab.

This action opens the Model Initial Condition Viewer, which shows the model initial
condition (default operating point).
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You cannot edit the Model Initial Condition operating point using the Linear
Analysis Tool. To edit the initial conditions of the model, change the appropriate
parameter of the relevant block in your Simulink model. For example, double-
click the magball/Magnetic Ball Plant/Current block to open the Block
Parameters dialog box and edit the value in the Initial condition box. Click OK.

Modify Operating Point in Linear Analysis Tool

This example shows how to modify an existing operating point in the Linear Analysis
Tool.

1 Open Simulink model.

sys = 'magball';

open_system(sys)

Opening magball loads the operating points magball_op1 and magball_op2 into
the MATLAB® Workspace.

2 In the Simulink Editor, select Analysis > Control Design > Linear Analysis.

The Linear Analysis Tool for the model opens.
3 Choose magball_op1 from the Operating Point list.
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4
Click  adjacent to the Operating Point list.

The magball_op1 editor opens. Use this dialog box to view and edit this operating
point.

Select the state or input Value to edit its value.

You cannot edit an operating point that you created by trimming a model in the
Linear Analysis Tool.

View and Modify Operating Point Object (MATLAB Code)

This example shows how to view and modify the states in the Simulink model using an
operating point object.
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1 Create operating point object from Simulink model.

sys = 'watertank';

load_system(sys)

op = operpoint(sys)

The operating point op contains the states and input levels of the Simulink model.
2 Set the value of the first state.

op.States(1).x = 1.26;

3 View the operating point object state values.

op.States

(1.) watertank/PID Controller/Integrator

      x: 1.26         

(2.) watertank/Water-Tank System/H

      x: 1     

Note: When you modify your Simulink model after creating an operating point object, use
update to update your operating point object.
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Choosing Between Simulation Snapshot and Operating Point from
Specifications

You can find steady-state operating points (or trim conditions) from specifications or at
specific simulation times (or simulation snapshots).

Choosing which approach to use for computing your operating point depends on what you
know about the operating point.

Use optimization-based steady-state operating point search when you know some of the
operating point states and model input or output signal levels. Successful operating point
search finds an operating point very close to a true steady-state solution.

Optimization-based search produces poor results when you specify:

• Initial guesses for steady-state operating point values that are far away from the
desired steady-state operating point.

• Incompatible input, output, or state constraints at equilibrium.

This is equivalent to overconstraining the optimization search.

Use the simulation-based approach when the simulation time is sufficiently short for the
model to reach steady state. The algorithms extracts operating point values when the
simulation reaches steady state. You must also specify the initial conditions that drive
the model to steady state.

Simulation-based computations produce poor operating point results when you specify:

• Simulation time that is insufficiently long to drive the model to steady state.
• Initial conditions do not cause the model to reach true equilibrium.

Note: If your Simulink model has internal states, do not linearize this model at the
operating point you compute from a simulation snapshot. Instead, try linearizing the
model using a simulation snapshot or at an operating point from optimization-based
search.

Examples and How To
• “Steady-State Operating Point to Meet Output Specification” on page 1-20
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• “Compute Operating Points at Simulation Snapshots” on page 1-39

More About

“Steady-State Operating Point (Trimming)” on page 1-2
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Steady-State Operating Points (Trimming) from Specifications

In this section...

“Steady-State Operating Point Search (Trimming)” on page 1-13
“Which States in the Model Must Be at Steady State?” on page 1-14
“Steady-State Operating Points from State Specifications” on page 1-15
“Steady-State Operating Point to Meet Output Specification” on page 1-20
“Initialize Steady-State Operating Point Search Using Simulation Snapshot” on page
1-23
“Compute Steady-State Operating Points for SimMechanics Models” on page 1-27
“Batch Compute Steady-State Operating Points Reusing Generated MATLAB Code” on
page 1-30
“Change Operating Point Search Optimization Settings” on page 1-32

Steady-State Operating Point Search (Trimming)

You can compute a steady-state operating point (or equilibrium operating point) using
numerical optimization methods to meet your specifications. The resulting operating
point consists of the equilibrium state values and model input levels.

Optimization-based operating point computation requires you to specify initial guesses
and constraints on the key operating point states, input levels, and model output signals.

You can usually improve your optimization results using simulation to initialize the
optimization. For example, you can extract the initial values of the operating point at a
simulation time when the model reaches the neighborhood of steady state.

Optimization-based operating point search lets you specify and constrain the following
variables at equilibrium:

• Initial state values
• States at equilibrium
• Maximum or minimum bounds on state values, input levels, and output levels
• Known (fixed) state values, input levels, or output levels
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Your operating point search might not converge to a steady-state operating point when
you overconstrain the optimization. You can overconstrain the optimization by specifying
incompatible constraints or initial guesses that are far away from the desired solution.

You can also control the accuracy of your operating point search by configuring the
optimization algorithm settings.

Examples and How To

“Change Operating Point Search Optimization Settings” on page 1-32

More About

“Which States in the Model Must Be at Steady State?” on page 1-14

Which States in the Model Must Be at Steady State?

When configuring a steady-state operating point search, you do not always need to
specify all states to be at equilibrium. A pendulum is an example of a system where it
is possible to find an operating point with all states at steady state. However, for other
types of systems, there may not be an operating point where all states are at equilibrium,
and the application does not require that all operating point states be at equilibrium.

For example, suppose you build an automobile model for a cruise control application with
these states:

• Vehicle position and velocity
• Fuel and air flow rates into the engine

If your goal is to study the automobile behavior at constant cruising velocity, you need
an operating point with the velocity, air flow rate, and fuel flow rate at steady state.
However, the position of the vehicle is not at steady state because the vehicle is moving
at constant velocity. The lack of steady state of the position variable is fine for the cruise
control application because the position does not have significant impact on the cruise
control behavior. In this case, you do not need to overconstrain the optimization search
for an operating point by require that all states should be at equilibrium.
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Similar situations also appear in aerospace systems when analyzing the dynamics of an
aircraft under different maneuvers.

Steady-State Operating Points from State Specifications

This example shows how to compute a steady-state operating point, or equilibrium
operating point, by specifying known (fixed) equilibrium states and minimum state
values.

Code Alternative

Use findop to find operating point from specifications. For examples and additional
information, see the findop reference page.

1 Open Simulink model.

sys = 'magball';

open_system(sys)

2 In the Simulink Editor, select Analysis > Control Design > Linear Analysis.

The Linear Analysis Tool for the model opens.
3 In the Linear Analysis tab, click Trim Model. Then click Specifications.

The Specifications for trim dialog box opens.

By default, the software specifies all model states to be at equilibrium (as shown by
the check marks in the Steady State column). The Inputs and Outputs tabs are
empty because this model does not have root-level input and output ports.
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4 In the States tab, select Known for the height state.

The height of the ball matches the reference signal height (specified in the
Desired Height block as 0.05). This height value should remain fixed during the
optimization.
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5 Enter 0 for the minimum bound of the Current state.

6
Click  to compute the operating point.

This action uses numerical optimization to find the operating point that meets your
specifications.

The Trim progress viewer shows that the optimization algorithm terminated
successfully. The (Maximum Error) Block area shows the progress of reducing the
error of a specific state or output during the optimization.
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A new variable, op_trim1, appears in the Linear Analysis Workspace.

7 Double-click op_trim1 in Linear Analysis Workspace to evaluate whether the
resulting operating point values meet the specifications.

The Actual dx values are about 0, which indicates that the operating point meets
the steady state specification.

The Actual Value of the states falls within the Desired Value bounds.
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8 (Optional) To automatically generate a MATLAB script, click Trim  and select
Generate MATLAB Script.

The generated script contains commands for computing the operating point for this
example.

Related Examples

• “Steady-State Operating Point to Meet Output Specification” on page 1-20
• “Change Operating Point Search Optimization Settings” on page 1-32
• “Initialize Steady-State Operating Point Search Using Simulation Snapshot” on page

1-23
• “Compute Steady-State Operating Points for SimMechanics Models” on page 1-27
• “Simulate Simulink Model at Specific Operating Point” on page 1-42
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• “Batch Compute Steady-State Operating Points Reusing Generated MATLAB Code”
on page 1-30

More About

• “Steady-State Operating Point (Trimming)” on page 1-2
• “Choosing Between Simulation Snapshot and Operating Point from Specifications” on

page 1-11

Steady-State Operating Point to Meet Output Specification

This example shows how to specify an output constraint of an engine speed for computing
the engine steady-state operating point.

1 Open Simulink model.

sys = 'scdspeed';

open_system(sys);

2 In the Simulink Editor, select Analysis > Control Design > Linear Analysis.

The Linear Analysis Tool for the model opens.
3 In the Linear Analysis tab, click Trim Model. Then click Specifications.

The Specifications for trim dialog box appears.
4 Examine the linearization outputs for scdspeed in the Outputs tab.
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Currently there are no outputs specified for scdspeed.
5 In the Simulink Editor, right-click the output signal from the rad/s to rpm block.

Select Linear Analysis Points > Trim Output Constraint.

This action adds the output signal constraint marker  to the model.

The output signal from the rad/s to rpm block now appears under the Outputs
tab.

6 Select Known and enter 2000 RPM for the engine speed as the output signal value.
Press Enter.
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7
Click  to find a new steady-state operating point that meets the specified output
signal constraint.

8 Double-click op_trim1 in Linear Analysis Workspace to evaluate whether the
resulting operating point values meet the specifications.

In the States tab, the Actual dx values are either zero or about zero. This result
indicates that the operating point meets the steady state specification.

In the Outputs tab, the Actual Value and the Desired Value are both 2000.
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Related Examples
• “Steady-State Operating Points from State Specifications” on page 1-15
• “Change Operating Point Search Optimization Settings” on page 1-32
• “Initialize Steady-State Operating Point Search Using Simulation Snapshot” on page

1-23
• “Compute Steady-State Operating Points for SimMechanics Models” on page 1-27
• “Simulate Simulink Model at Specific Operating Point” on page 1-42
• “Batch Compute Steady-State Operating Points Reusing Generated MATLAB Code”

on page 1-30

More About
• “Steady-State Operating Point (Trimming)” on page 1-2
• “Choosing Between Simulation Snapshot and Operating Point from Specifications” on

page 1-11

Initialize Steady-State Operating Point Search Using Simulation Snapshot

• “Initialize Operating Point Search Using Linear Analysis Tool” on page 1-23
• “Initialize Operating Point Search (MATLAB Code)” on page 1-26

Initialize Operating Point Search Using Linear Analysis Tool

This example shows how to use the Linear Analysis Tool to initialize the values of an
operating point search using a simulation snapshot.
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If you know the approximate time when the model reaches the neighborhood of a steady-
state operating point, you can use simulation to get the state values to be used as the
initial condition for numerical optimization.

1 Open Simulink model.

sys = ('watertank');

open_system(sys)

2 In the Simulink Editor, select Analysis > Control Design > Linear Analysis.

The Linear Analysis Tool for the model opens.
3 In the Linear Analysis tab, click Operating Point Snapshot

The Operating Point Snapshots tab opens.
4 Enter 10 in the Simulation Snapshot Times field to extract the operating point at

this simulation time. Press Enter.

Click  to take a snapshot of the system at the specified time.

op_snapshot1 appears in the Linear Analysis Workspace. The snapshot,
op_snapshot1, contains all state values of the system at the specified time.

5 In the Linear Analysis tab, click Trim Model. Then click Specifications.

The Specifications for trim dialog box appears.
6 Click Import.

The Import initial values and specifications dialog opens.
7 Select op_snapshot1 and click Import to initialize the operating point states with

the values you obtained from the simulation snapshot.
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The state values displayed in the Specifications for trim dialog box update to reflect
the new values.

8
Click  to find the optimized operating point using the states at t = 10 as the
initial values.

9 Double-click op_trim1 in Linear Analysis Workspace to evaluate whether the
resulting operating point values meet the specifications.
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The Actual dx values are near zero. This result indicates that the operating point
meets the steady state specifications.

Initialize Operating Point Search (MATLAB Code)

This example show how to use initopspec to initialize operating point object values for
optimization-based operating point search.

1 Open Simulink model.

sys = 'watertank';

load_system(sys);

2 Extract an operating point from simulation after 10 time units.

opsim = findop(sys,10);

3 Create operating point specification object.

By default, all model states are specified to be at steady state.

opspec = operspec(sys);

4 Configure initial values for operating point search.

opspec = initopspec(opspec,opsim);

5 Find the steady state operating point that meets these specifications.

[op,opreport] = findop(sys,opspec)

bdclose(sys);

opreport describes the optimization algorithm status at the end of the operating
point search.

 Operating Report for the Model watertank.
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 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.

States: 

----------

(1.) watertank/PID Controller/Integrator

      x:          1.26      dx:             0 (0)

(2.) watertank/Water-Tank System/H

      x:            10      dx:     -1.1e-014 (0)

Inputs: None 

----------

Outputs: None 

----------

dx, which is the time derivative of each state, is effectively zero. This value of the
state derivative indicates that the operating point is at steady state.

Related Examples

• “Steady-State Operating Points from State Specifications” on page 1-15

More About

• “Change Operating Point Search Optimization Settings” on page 1-32
• “Steady-State Operating Point (Trimming)” on page 1-2

Compute Steady-State Operating Points for SimMechanics Models

This example shows how to compute the steady-state operating point of a SimMechanics
model from specifications.

Note: You must have installed SimMechanics software to execute this example on your
computer.

1 Open the SimMechanics model.
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sys = 'scdmechconveyor';

open_system(sys);

2 Double-click the Env block to open the Block Parameters dialog box.
3 In the Parameters tab, select Trimming as the Analysis mode. Click OK.
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This action adds an output port to the model with constraints that must be satisfied
to a ensure a consistent SimMechanics machine.

4 In the Simulink Editor, select Analysis > Control Design > Linear Analysis.

The Linear Analysis Tool for the model opens.
5 In the Linear Analysis tab, click Trim Model. Then click Specifications.

The Specifications for trim dialog box appears.

By default, the software specifies all model states to be at equilibrium (as shown
in the Steady State column). The Outputs tab shows the error constraints in the
system that must be set to zero for steady-state operating point search.
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6 In the Outputs tab, select Known to set all constraints to 0.

You can now specify additional constraints on the operating point states and input levels,
and find the steady-state operating point for this model.

After you finish steady-state operating point search for the SimMechanics model, reset
the Analysis mode to Forward dynamics in the Env block parameters dialog box.

More About
• “Change Operating Point Search Optimization Settings” on page 1-32

Batch Compute Steady-State Operating Points Reusing Generated
MATLAB Code

This example shows how to batch compute steady-state operating points for a model
using generated MATLAB code. You can batch linearize a model using the operating
points and study the change in model behavior.

If you are new to writing scripts, use the Linear Analysis Tool to interactively configure
your operating points search. You can use Simulink Control Design to automatically
generate a script based on your Linear Analysis Tool settings.

1 Open the Simulink model.

sys = 'magball';

open_system(sys);
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2 Open the Linear Analysis Tool for the model.

In the Simulink Editor, select Analysis > Control Design > Linear Analysis.
3 Open the Specifications for trim dialog box.

In the Linear Analysis tab, click Trim Model. The Trim Model tab should open.

Click Specifications.

By default, the software specifies all model states to be at equilibrium (as shown in
the Steady State column).

4 In the States tab, select the Known check box for the magball/Magnetic Ball
Plant/height state.

5
Click  to compute the operating point using numerical optimization.

The Trim progress viewer shows that the optimization algorithm terminated
successfully. The (Maximum Error) Block area shows the progress of reducing the
error of a specific state or output during the optimization.

6 Click Generate MATLAB Script in the Trim list to automatically generate a
MATLAB script.

The MATLAB Editor window opens with the generated script.
7 Edit the script:

a Remove unneeded comments from the generated script.
b Define the height variable, height, with values at which to compute operating

points.
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c Add a for loop around the operating point search code to compute a steady-state
operating point for each height value. Within the loop, before calling findop,
you must update the reference ball height, specified by the Desired Height block.

Your script should now look similar to this (excluding most comments):

function [op,opreport] = myoperatingpointsearch

%% Specify the model name

sys = 'magball';

load_system(sys)

 

%% Create operating point specification object

opspec = operspec(sys)

 

% State (5) - magball/Magnetic Ball Plant/height

% - Default model initial conditions are used to initialize optimization.

opspec.States(5).Known = true;

 

%% Create the options

opt = findopOptions('DisplayReport','iter');

 

%% Specify the ball heights at which to compute operating points

height = [0.05;0.1;0.15];

%% Loop over height values to find the corresponding steady-state 

%% operating points

for ct = 1:numel(height)

    % Set the ball height in the specification

    opspec.States(5).x = height(ct);

    

    % Update model parameter

    set_param('magball/Desired Height','Value',num2str(height(ct)));

    

    % Trim the model

    [op(ct),opreport(ct)] = findop(sys,opspec,opt);

end

See Also

• findop

• “Batch Linearize Model at Multiple Operating Points Using linearize”
• “Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer”

Change Operating Point Search Optimization Settings



 Code Alternative

1-33

This example shows how to control the accuracy of your operating point search by
configuring the optimization algorithm.

Typically, you adjust the optimization settings based on the operating point search
report, which is automatically created after each search.

Code Alternative

Use findopOptions to configure optimization algorithm settings for findop.

1 In the Linear Analysis Tool, open the Linear Analysis tab. Click Trim Model and
click Optimization Options.

This action opens the Options for trim dialog box.
2 Change the appropriate optimization settings.

This table lists the most common optimization settings.

Optimization Status Option to Change Comment

Optimization ends before
completing (too few iterations)

Maximum iterations Increase the number of
iterations

State derivative or error in
output constraint is too large

Function tolerance or
Constraint tolerance
(depending on selected
algorithm)

Decrease the tolerance value

Note: You can get help on each option by right-clicking the option label and selecting
What's This?.



1 Steady-State Operating Points

1-34

Related Examples

• “Steady-State Operating Points from State Specifications” on page 1-15
• “Steady-State Operating Point to Meet Output Specification” on page 1-20
• “Batch Compute Steady-State Operating Points Reusing Generated MATLAB Code”

on page 1-30

More About

• “Steady-State Operating Point (Trimming)” on page 1-2
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Import and Export Specifications For Operating Point Search

When you modify an operating point specification in the Linear Analysis Tool, you
can export the specification to the MATLAB workspace or the Linear Analysis Tool
workspace. Exported specifications are saved as operating point specifications objects
(see operspec). Exporting specifications can be useful when you expect to perform
multiple trimming operations using the same or a very similar set of specifications.
Additionally, you can export interactively-edited operating point specifications when you
want to use the findop command to perform multiple trimming operations with a single
compilation of the model. (See “Batch Compute Steady-State Operating Points” on page
1-37.)

You can also import saved operating point specifications to the Linear Analysis Tool and
use them to interactively compute trimmed operating points. Importing a specification
can be useful when you want to trim a model to a specification that is similar to one you
previously saved. In that case, you can import the specification to the Linear Analysis
Tool and interactively change it. You can then export the modified specification, or
compute a trimmed operating from it.

To import or save an operating point specification:

1 In the Linear Analysis Tool, on the Linear Analysis Tab, click Trim Model to open
the Trim Model Tab.

2 Click Specifications to open the Specifications for trim dialog box.
3 Click Import to import a saved operating point specification from the Linear

Analysis Workspace or the MATLAB Workspace. Click Export to save an operating
point specification to the Linear Analysis Workspace or the MATLAB Workspace.
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For more information about operating point specifications, see the operspec and
findop reference pages.
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Batch Compute Steady-State Operating Points

This example shows how to find operating points for multiple operating point
specifications using the findop command. You can batch linearize the model using the
operating points and study the change in model behavior.

Each time you call findop, the software compiles the Simulink model. To find operating
points for multiple specifications, you can give findop a vector of operating point
specifications, instead of repeatedly calling findop within a for loop. The software uses
a single model compilation to compute the multiple operating points, which is efficient,
especially for models that are expensive to recompile repeatedly.

1 Open Simulink model.

sys = 'scdspeed';

open_system(sys);

2 Create operating point specification object.

opspec1 = operspec(sys);

By default, all model states are specified to be at steady state.
3 Configure the output specification.

blk = [sys '/rad//s to rpm'];

opspec1 = addoutputspec(opspec1,blk,1);

opspec1.Outputs(1).Known = true;

opspec1.Outputs(1).y = 1500;

opspec1 specifies a stead-state operating point in which the output of the block
rad/s to rpm is fixed at 500.

Note: Alternatively, you can configure an operating point specification using the
Linear Analysis Tool and export the specification to the MATLAB workspace. See
“Import and Export Specifications For Operating Point Search” for more information.

4 Create and configure additional operating point specifications.

opspec2 = copy(opspec1);

opspec2.Outputs(1).y = 2000;

opspec3 = copy(opspec1);

opspec3.Outputs(1).y = 2500;
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Using the copy command creates an independent operating point specification
that you can edit without changing opspec1. Here, the specifications opspec2 and
opspec3 are identical to opspec1, except for the target output level.

5 Find the operating points that meet each of the three output specifications.

opspecs = [opspec1,opspec2,opspec3];

ops = findop(sys,opspecs);

bdclose(sys);

Pass the three operating point specifications to findop in the vector opspecs. When
you give findop a vector of operating point specifications, it finds all the operating
points with only one model compilation. ops is a vector of operating point objects for
the model scdspeed that correspond to the three specifications in the vector.

See Also
findop

Related Examples
• “Batch Compute Steady-State Operating Points Reusing Generated MATLAB Code”
• “Batch Linearize Model at Multiple Operating Points Using linearize”
• “Vary Operating Points and Obtain Multiple Transfer Functions Using

slLinearizer”
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Steady-State Operating Points from Simulation

In this section...

“Simulation Snapshot Operating Points” on page 1-39
“Compute Operating Points at Simulation Snapshots” on page 1-39

Simulation Snapshot Operating Points

You can compute a steady-state operating point (or equilibrium operating point) from
model simulation. The resulting operating point consists of the state values and model
input levels at the specified simulation time.

Simulation-based operating point computation requires that you configure your model by
specifying:

• Initial conditions that cause your model to converge to equilibrium
• Simulation time at which the model reaches equilibrium

You can use the simulation snapshot operating point to initialize the trim point search.

Note: If your Simulink model has internal states, do not linearize this model at the
operating point you compute from a simulation snapshot. Instead, try linearizing the
model using a simulation snapshot or at an operating point from optimization-based
search.

Compute Operating Points at Simulation Snapshots

This example shows how to use the Linear Analysis Tool to compute an operating point
at specified simulation times (or simulation snapshots).

Code Alternative

Use findop to compute operating point at simulation snapshot. For examples and
additional information, see the findop reference page.
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1 Open Simulink model.

sys = 'magball';

open_system(sys);

2 In the Simulink Editor, select Analysis > Control Design > Linear Analysis.

The Linear Analysis Tool for the model opens, with the default operating point being
set to the model initial condition.

3 In the Linear Analysis tool, click the Operating Point Snapshots tab.
4 Specify [1,10] in the Simulation Snapshot Times field. Press Enter.

This vector specifies operating points at t = 1 and t = 10.
5

Click  to take a snapshot of the system at the specified times.

A new variable, op_snapshot1, appears in the Linear Analysis Workspace.
op_snapshot1 contains the two operating points.

6 Double-click op_snapshot1 to see the resulting operating points. Select an
operating point of interest from the Select Operating Point list to see it.
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For example, to evaluate your operating point from a simulation snapshot:

1 Initialize the model at the operating point (see “Simulate Simulink Model at Specific
Operating Point” on page 1-42)

2 Add Scope blocks to show the output signals that should reach steady state during
the simulation.

3 Run the simulation to check whether these key signals are at steady state.

More About

• “Choosing Between Simulation Snapshot and Operating Point from Specifications” on
page 1-11
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Simulate Simulink Model at Specific Operating Point

This example shows how to initialize a model at a specific operating point for simulation.

1 Compute a steady-state operating point, as described in “Compute Operating Points
at Simulation Snapshots” on page 1-39.

2 In the Linear Analysis Tool, double-click the operating point variable in the Linear
Analysis Workspace.

The Edit dialog box opens.

3 Click Initialize model.

The Initialize Model dialog box opens.
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4 Use the default Variable Name for the operating point object. Alternatively, you
can edit this variable name.

Click OK to export the operating point to the MATLAB Workspace.

This action also sets the operating point values in the Data Import/Export pane
of the Configuration Parameters dialog box. Simulink uses this operating point as
initial conditions when simulating the model.

Tip If you want to store this operating point with the model, export the operating
point to the Model Workspace instead.

In the Simulink Editor, select Simulation > Run to simulate the model starting at the
specified operating point.

Related Examples

• “Steady-State Operating Points from State Specifications” on page 1-15
• “Compute Operating Points at Simulation Snapshots” on page 1-39
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Handling Blocks with Internal State Representation

In this section...

“Operating Point Object Excludes Blocks with Internal States” on page 1-44
“Identifying Blocks with Internal States in Your Model” on page 1-45
“Configuring Blocks with Internal States for Steady-State Operating Point Search” on
page 1-45

Operating Point Object Excludes Blocks with Internal States

The operating point object used for linearization and control design does not include
these Simulink blocks with internal state representation:

• Memory blocks
• Transport Delay and Variable Transport Delay blocks
• Disabled Action Subsystem blocks
• Backlash blocks
• MATLAB Function blocks with persistent data
• Rate Transition blocks
• Stateflow blocks
• S-Function blocks with states not registered as Continuous or Double Value Discrete

For example, if you compute a steady-state operating point for this Simulink model, the
resulting operating point object does not include the Backlash block states because these
states have an internal representation. If you use this operating point object to initialize
a Simulink model, the initial conditions of the Backlash blocks might be incompatible
with the operating point.
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Identifying Blocks with Internal States in Your Model

Generate a list of blocks that have internal state representations.

sldiagnostics(sys,'CountBlocks')

where sys is your model, specified as a string. This command also returns the number of
occurrences of each block.

Configuring Blocks with Internal States for Steady-State Operating Point
Search

Blocks with internal states can cause problems for steady-state operating point search
(trimming). Where there is no direct feedthrough, the input to the block at the current
time does not determine the output of the block at the current time.

To fix this issues for Memory blocks, Transport Delay, or Variable Transport Delay
blocks, select the Direct feedthrough of input during linearization option in the
Block Parameters dialog box before searching for an operating point or linearizing a
model at a steady state. This setting makes such blocks behave as if they have a gain of 1
during operating point search.

For example, the next model includes a Transport Delay block. In this case, you
cannot find a steady state operating point using optimization because the output of the
Transport Delay is always zero. Because the reference signal is 1, the input to the Plant
block must be nonzero to get the plant block to have an output of 1 and be at steady
state.

To fix this issue, select the Direct feedthrough of input during linearization option
in the Block Parameters dialog box before searching for an operating point. This setting
lets the PID Controller block push a nonzero value to the Plant block.
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For other blocks with internal states, determine whether the output of the block impacts
the state derivatives or desired output levels before computing operating points. If
the block impacts these derivatives or output levels, consider replacing it using a
configurable subsystem.

You can also set direct feedthrough options at the command-line instead of using the
block parameter dialog box.

Block Command to specify direct feedthrough

Memory set_param(blockname,'LinearizeMemory','on')

Transport Delay or Variable
Transport Delay

set_param(blockname,'TransDelayFeedthrough','on')
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Synchronize Simulink Model Changes with Operating Point
Specifications

In this section...

“Synchronize Simulink Model Changes with Linear Analysis Tool” on page 1-47
“Synchronize Simulink Model Changes with Existing Operating Point Specification
Object” on page 1-50

Synchronize Simulink Model Changes with Linear Analysis Tool

This example shows how to update the operating point specifications in the Linear
Analysis Tool to reflect changes to the Simulink model.

Modifying your Simulink model can change, add, or remove states, inputs, or outputs,
which changes the operating point. If you change your model while the Linear Analysis
Tool is open, you must sync the operating point specifications in the Linear Analysis Tool
to reflect the changes in the model.

1 Open Simulink model.

sys = ('scdspeedctrl');

open_system(sys)

2 In the Simulink Editor, select Analysis > Control Design > Linear Analysis.

The Linear Analysis Tool for the model opens, with the default operating point being
set to the model initial condition.

3 In the Linear Analysis tab, click Trim Model. Then click Specifications.

The Specifications for trim dialog box appears.
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The Reference Filter block contains just one state.
4 In the Simulink Editor, double-click the Reference Filter block. Change the

Numerator of the transfer function to 100, and change the Denominator to [1 20
100]. Click OK.
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This change adds a state to the Simulink model.
5 In the Specifications for trim dialog, click Sync with Model to synchronize the

operating point specifications in the Linear Analysis Tool with the model.
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The dialog now shows two states for the Reference Filter block.
6

Click  to compute the operating point.

Synchronize Simulink Model Changes with Existing Operating Point
Specification Object

This example shows how to use update to update the operating point specification object
after you update the Simulink model.

1 Open Simulink model.

sys = 'scdspeedctrl';

open_system(sys);

2 Create operating point specification object.

By default, all model states are specified to be at steady state.

opspec = operspec(sys);

3 In the Simulink Editor, double-click the Reference Filter block. Change the
Numerator of the transfer function to [100] and the Denominator to [1 20 100].
Click OK.
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4 Find the steady state operating point that meets these specifications.

op = findop(sys,opspec)

This command results in an error because the changes to your model are not
reflected in your operating point specification object:

??? The model scdspeedctrl has been modified and the operating point

object is out of date.  Update the object by calling the function

update on your operating point object.

5 Update the operating point specification object with changes to the model. Repeat
the operating point search.

opspec = update(opspec);

op = findop(sys,opspec)

bdclose(sys);

After updating the operating point specifications object, the optimization algorithm
successfully finds the operating point.
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Linearizing Nonlinear Models

In this section...

“What Is Linearization?” on page 2-3
“Applications of Linearization” on page 2-5
“Linearization in Simulink Control Design” on page 2-6
“Choosing Linearization Tools” on page 2-7
“Model Requirements for Exact Linearization” on page 2-10
“Operating Point Impact on Linearization” on page 2-10

What Is Linearization?

Linearization is a linear approximation of a nonlinear system that is valid in a small
region around the operating point.

For example, suppose that the nonlinear function is y x=
2 . Linearizing this nonlinear

function about the operating point x=1, y=1 results in a linear function y x= -2 1 .

Near the operating point, y x= -2 1  is a good approximation to y x=
2 . Away from the

operating point, the approximation is poor.

The next figure shows a possible region of good approximation for the linearization of
y x=

2 . The actual region of validity depends on the nonlinear model.
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Extending the concept of linearization to dynamic systems, you can write continuous-
time nonlinear differential equations in this form:

&x t f x t u t t

y t g x t u t t

( ) ( ), ( ),

( ) ( ), ( ), .

= ( )

= ( )

In these equations, x(t) represents the system states, u(t) represents the inputs to the
system, and y(t) represents the outputs of the system.

A linearized model of this system is valid in a small region around the operating point
t=t0, x(t0)=x0, u(t0)=u0, and y(t0)=g(x0,u0,t0)=y0.

To represent the linearized model, define new variables centered about the operating
point:
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The linearized model in terms of δx, δu, and δy is valid when the values of these variables
are small:

d d d

d d d
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Examples and How To

• “Linearize Simulink Model at Model Operating Point” on page 2-48
• “Plant Linearization” on page 2-31
• “Open-Loop Response of Control System for Stability Margin Analysis” on page

2-42
• “Visualize Bode Response of Simulink Model During Simulation” on page 2-53

More About

• “Applications of Linearization” on page 2-5
• “Choosing Linearization Tools” on page 2-7

Applications of Linearization

Linearization is useful in model analysis and control design applications.

Exact linearization of the specified nonlinear Simulink model produces linear state-
space, transfer-function, or zero-pole-gain equations that you can use to:

• Plot the Bode response of the Simulink model.
• Evaluate loop stability margins by computing open-loop response.
• Analyze and compare plant response near different operating points.
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• Design linear controller

Classical control system analysis and design methodologies require linear, time-
invariant models. Simulink Control Design automatically linearizes the plant when
you tune your compensator. See “Choosing a Control Design Approach”.

• Analyze closed-loop stability.
• Measure the size of resonances in frequency response by computing closed-loop linear

model for control system.
• Generate controllers with reduced sensitivity to parameter variations and modeling

errors (requires Robust Control Toolbox™).

Linearization in Simulink Control Design

You can use Simulink Control Design to linearize continuous-time, discrete-time, or
multirate Simulink models. The resulting linear time-invariant model is in state-space
form.

Simulink Control Design uses a block-by-block approach to linearize models, instead of
using full-model perturbation. This block-by-block approach individually linearizes each
block in your Simulink model and combines the results to produce the linearization of the
specified system.

The block-by-block linearization approach has several advantages to full-model
numerical perturbation:

• Most Simulink blocks have preprogrammed linearization that provides Simulink
Control Design an exact linearization of each block at the operating point.

• You can configure blocks to use custom linearizations without affecting your model
simulation.

See “Controlling Block Linearization” on page 2-120.
• Simulink Control Design automatically removes nonminimal states.
• Ability to specify linearization to be uncertain (requires Robust Control Toolbox)

More About

“Exact Linearization Algorithm” on page 2-153
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Choosing Linearization Tools

• “Choosing Simulink Control Design Linearization Tools” on page 2-7
• “Choosing Exact Linearization Versus Frequency Response Estimation” on page

2-8
• “Linearization Using Simulink Control Design Versus Simulink” on page 2-8

Choosing Simulink Control Design Linearization Tools

Simulink Control Design lets you perform linear analysis of nonlinear models using a
graphical user interface, functions, or blocks.

Linearization Tool When to Use

“Linear Analysis Tool” • Interactively explore Simulink model
linearization under different operating
conditions.

• Diagnose linearization issues.
• Automatically generate MATLAB code for

batch linearization.
linearize • Linearize a Simulink model for command-

line analysis of poles and zeros, plot
responses, and control design.

• Batch linearize for varying model parameter
values and operating points.

slLinearizer Batch linearize for varying model parameter
values, operating points, and I/O sets.

Linear Analysis Plots blocks • Visualize linear characteristics of your
Simulink model during simulation.

• View bounds on linear characteristics of
your Simulink model on plots.

• Optionally, check that the linear
characteristics of your Simulink model
satisfy specified bounds.
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Linearization Tool When to Use

Note: Linear Analysis Plots blocks do not
support code generation. You can only use these
blocks in Normal simulation mode.

Choosing Exact Linearization Versus Frequency Response Estimation

In most cases, you should use exact linearization instead of frequency response
estimation to obtaining a linear approximation of a Simulink model.

Exact linearization:

• Is faster because it does not require simulation of the Simulink model.
• Returns a parametric (state-space).

Frequency response estimation returns frequency response data. To create a transfer
function or a state-space model from the resulting frequency response data requires
an extra step using System Identification Toolbox™ to fit a model.

Use frequency response estimation:

• To validate exact linearization accuracy.
• When your Simulink model contains discontinuities or non-periodic event-based

dynamics.
• To study the impact of amplitude size on frequency response.

See Describing Function Analysis of Nonlinear Simulink Models.

Linearization Using Simulink Control Design Versus Simulink

How is Simulink linmod different from Simulink Control Design functionality for
linearizing nonlinear models?

Although both Simulink Control Design and Simulink linmod perform block-by-block
linearization, Simulink Control Design functionality is enhanced by a more flexible user
interface and Control System Toolbox™ numerical algorithms.

 Simulink Control Design Linearization Simulink Linearization

Graphical-user interface Yes No
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 Simulink Control Design Linearization Simulink Linearization

See “Linearize Simulink Model at
Model Operating Point” on page
2-48.

Flexibility in defining
which portion of the
model to linearize

Yes. Lets you specify linearization
I/O points at any level of a
Simulink model, either graphically
or programmatically without
having to modify your model.
See “Linearize at Trimmed
Operating Point” on page 2-62.

No. Only root-level linearization
I/O points, which is equivalent to
linearizing the entire model.
Requires that you add and
configure additional Linearization
Point blocks.

Open-loop analysis Yes. Lets you open feedback loops
without deleting feedback signals
in the model.
See “Open-Loop Response of
Control System for Stability
Margin Analysis” on page 2-42.

Yes, but requires that you delete
feedback signals in your model to
open the loop

Control linear model
state ordering

Yes
See “Ordering States in Linearized
Model” on page 2-86.

No

Control linearization of
individual blocks

Yes. Lets you specify custom
linearization behavior for both
blocks and subsystems.
See “Controlling Block
Linearization” on page 2-120.

No

Linearization diagnostics Yes. Identifies problematic
blocks and lets you examine the
linearization value of each block.
See “Linearization
Troubleshooting Overview” on
page 2-105.

No

Block detection and
reduction

Yes. Block reduction detects blocks
that do not contribute to the
overall linearization yielding a
minimal realization.

No
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 Simulink Control Design Linearization Simulink Linearization

Control of rate conversion
algorithm for multirate
models

Yes No

Model Requirements for Exact Linearization

Exact linearization supports most Simulink blocks.

However, Simulink blocks with strong discontinuities or event-based dynamics linearize
(correctly) to zero or large (infinite) gain. Sources of event-based or discontinuous
behavior exist in models that have Simulink Control Design requires special handling of
models that include:

• Blocks from Discontinuities library
• Stateflow charts
• Triggered subsystems
• Pulse width modulation (PWM) signals

For most applications, the states in your Simulink model should be at steady state.
Otherwise, your linear model is only valid over a small time interval.

More About

“Exact Linearization Algorithm” on page 2-153

Operating Point Impact on Linearization

Choosing the right operating point for linearization is critical for obtaining an accurate
linear model. The linear model is an approximation of the nonlinear model that is valid
only near the operating point at which you linearize the model.

Although you specify which Simulink blocks to linearize, all blocks in the model affect the
operating point.

A nonlinear model can have two very different linear approximations when you linearize
about different operating points.
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The linearization result for this model is shown next, with the initial condition for the
integration x0 = 0.

This table summarizes the different linearization results for two different operating
points.

Operating Point Linearization Result

Initial Condition = 5, State x1 = 5 30/s
Initial Condition = 0, State x1 = 0 0
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Specify Model Portion to Linearize

In this section...

“Specifying Subsystem, Loop, or Block to Linearize” on page 2-12
“Opening Feedback Loops” on page 2-13
“Ways to Specify Portion of Model to Linearize” on page 2-15
“Specify Portion of Model to Linearize in Simulink Model” on page 2-15
“Specify Portion of Model to Linearize in Linear Analysis Tool” on page 2-18
“Edit Portion of Model to Linearize in Linear Analysis Tool” on page 2-23
“Select Bus Elements as Linear Analysis Points” on page 2-25

Specifying Subsystem, Loop, or Block to Linearize

Simulink Control Design lets you specify the subsystem, loop, or block to linearize using
linearization input and output points (linearization I/O points).

A linearization input point defines the additive input signal to the linear model. A
linearization output point defines the output signal of the linear model.

You can linearize:

• Closed- or open-loop responses using a linearization input point on the input signal to
the portion of the model you want to linearize, and a linearization output point at the
output signal of that portion of the model.

• Specific subsystem or block.

In this case, linearization I/O points are the input and output signals corresponding to
the subsystem or block.

You can define other linear models using additional types of linear analysis points:

• Loop Transfer — Specifies an output point before a loop opening followed by an
input. Use this input/output type to compute the open-loop transfer function around
the loop.

• Loop Break — Specifies a loop opening. Use to compute open-loop transfer function
around a loop. Typically, you use this input/output type when you have nested loops
or to ignore the effect of some loops.
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• Sensitivity — Specifies an additive input followed by an output measurement. Use to
compute sensitivity transfer function for an additive disturbance at the signal.

• Complementary Sensitivity — Specifies an output followed by an additive input.
Use to compute closed-loop transfer function around the loop.

Linearization I/O points are pure annotations and do not impact model simulation.

More About

“Ways to Specify Portion of Model to Linearize” on page 2-15

Opening Feedback Loops

If your model contains one or more feedback loops, you can choose to linearize an open-
loop or a closed-loop system.

Simulink Control Design lets you remove the effects of the feedback loop by inserting
an open loop point without having to manually break signal lines. In fact, for nonlinear
models, do not open the loop by manually removing the feedback signal from the model;
this action changes the model operating point and produces a different linear model.

Note: If a model is already linear, it has the same form regardless of the operating point.

Correct placement of the loop opening is critical to obtaining the right linear model. For
example, you might want to linearize only the plant model in a feedback control loop.

To understand the difference between open-loop and closed-loop analysis, consider this
single-loop control system.
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Suppose you want to linearize the plant, P, about an equilibrium operating point of the
model.

To linearize only the plant P, you must open the loop at the output of the P block. If you
do not open the loop, and if C and P are linear, the linearized model between U and Y is

P s

P s C s

( )

( ) ( )1+
.

The loop opening does not need to be in the same location as the linearization input or
output point. For example, the next figure shows a loop opening after the gain on the
outer feedback loop, which removes the effect of this loop from the linearization. To check
whether you correctly excluded the feedback signal, linearize the model and highlight the
blocks included in the linearization.

In this example, if you place a loop opening at the same location as the linearization
output point, the effect of the inner loop from the linearization is also removed.
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More About
• “Ways to Specify Portion of Model to Linearize” on page 2-15
• “Highlighting Linearized Blocks” on page 2-111
• “How the Software Treats Loop Openings” on page 2-158

Ways to Specify Portion of Model to Linearize

There are several ways to specify linearization inputs, outputs, and loop-opening
locations (linear analysis points, linearization I/O sets, or, simply, I/O sets) that define
the portion of the model you want to linearize. Each method has its own advantages. You
can:

• Specify linearization I/O points and loop openings directly in the model. An advantage
of this method is that the locations of linearization I/O points and loop openings are
shown graphically in the model. When you specify linearization I/O sets this way and
save the model, the I/O set persists in the model.

• Interactively define linearization I/O sets using the Linear Analysis Tool. The Create
linearization I/O set dialog box in the Linear Analysis Tool allows you to define
multiple open-loop or closed-loop transfer functions for your model interactively. This
approach does not make changes to the model.

• Define linearization I/O sets at the command line using linio. This method allows
you to define multiple open-loop or closed-loop transfer functions without changing
the model.

• Define analysis points and openings for an slLinearizer interface at the command
line. This method allows you to obtain multiple open-loop or closed-loop transfer
functions without changing the model.

Specify Portion of Model to Linearize in Simulink Model

To specify linearization I/O points and loop openings directly in your Simulink model:

1 Right-click on the signal you want to define as a linearization input point or output
point.

This action opens a context menu on the signal.
2 Hover the cursor over Linear Analysis Points in the context menu.

A submenu appears listing types of linear analysis points.
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3 Select the type of linear analysis point you want to define at the signal.
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1 Right-click the block output signal corresponding to the linearization input
point. For example, select Linear Analysis Points > Input Perturbation.
This type of input point specifies an additive input to a signal.

If you want to specify the signal as a open-loop input point, select Linear
Analysis Points > Open-loop Input. This option specifies an input point after
a loop opening. Opening the loop removes the effects of the feedback signal on
the linearization without changing the model operating point. The loop opening
marker appears in the model.

Caution Do not open the loop by manually removing the feedback signal from the
model. Removing the signal manually changes the operating point of the model.

2 Right-click the block output signal corresponding to the linearization output
point. For example, select Linear Analysis Points > Output Measurement.
This type of output point takes measurement at a signal.

If you want to specify the signal as a open-loop output point, select Linear
Analysis Points > Open-loop Output. This option specifies an output point
before a loop opening.

Depending on the response you want, you can select one of the following additional
linear analysis points:

• Loop Transfer — Specifies an output point before a loop opening followed by
an input. Use this input/output type to compute the open-loop transfer function
around the loop.

• Loop Break — Specifies a loop opening. Use to compute open-loop transfer
function around a loop. Typically, you use this input/output type when you have
nested loops or to ignore the effect of some loops.

• Sensitivity — Specifies an additive input followed by an output measurement.
Use to compute sensitivity transfer function for an additive disturbance at the
signal.

• Complementary Sensitivity — Specifies an output followed by an additive
input. Use to compute closed-loop transfer function around the loop.

When you specify linearization inputs and outputs or loop openings, markers appear
in your model indicating the linear analysis point type.
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Input Point Output Point

Loop
Opening

4 Repeat step 3 for all signals you want to define as linearization I/O points or open-
loop points.

Specifying linear analysis points using the context menu changes the model (makes the
model “dirty”, that is, saving the model stores the points with the model).

More About

• “Specifying Subsystem, Loop, or Block to Linearize” on page 2-12
• “Opening Feedback Loops” on page 2-13
• “Ways to Specify Portion of Model to Linearize” on page 2-15

Specify Portion of Model to Linearize in Linear Analysis Tool

You use linearization inputs, outputs, and loop-opening locations (linearization I/O
sets) to specify which portion of the model to linearize. You can specify one or more
linearization I/O sets interactively in the Linear Analysis Tool, without introducing
changes to the model.

To access the Create linearization I/O set dialog box:

1 Click the Exact Linearization or Frequency Response Estimation tab.
2 From the Analysis I/Os drop-down list, select Create new linearization I/Os.
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The Create linearization I/O set dialog box opens.

Create Linearization I/O Set

To create a new linearization I/O set:

1 In your Simulink model, select one or more signals that you want to define as a
linearization input or output point.

The selected signals appear in the Create linearization I/O set dialog box under
Currently selected signals.
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2 In the Create linearization I/O set dialog box, click a signal name under Currently
selected signals.

3 Click Add. The signal appears in the list of Analysis I/Os.

4 Select the linearization point type for a signal from the Configuration drop-down
list for that signal. For example:

• If you want the selected signal to be a linearization output point, select Output
Measurement.

• If you want the signal to be an open-loop output point, select Open-loop
Output.
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5 Repeat steps 1–4 for any other signals you want to define as linearization I/O points.

Tip To highlight in the Simulink model the blocks that are included in the
linearization specified by the current list of Analysis I/Os, click Highlight.

6 After you define all the signals for the I/O set, enter a name for the I/O set in the
Variable name field located at the top-left of the window.

7 Click OK.

The Create linearization I/O set dialog box closes. A new linearization I/O set appears in
the Linear Analysis Workspace of the Linear Analysis Tool. The new linearization I/O set
displays the name you specified.
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The newly created linearization I/O set is automatically selected in the Analysis I/
Os menu for either the Exact Linearization or Frequency Response Estimation tab,
depending on which you selected originally.
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Creating linearization I/O sets in the Linear Analysis Tool does not change the Simulink
model. You can create multiple I/O sets for a single model.

More About
• “Specifying Subsystem, Loop, or Block to Linearize” on page 2-12
• “Opening Feedback Loops” on page 2-13
• “Ways to Specify Portion of Model to Linearize” on page 2-15

Edit Portion of Model to Linearize in Linear Analysis Tool

You can interactively edit a linearization I/O set stored in the Linear Analysis Workspace
using the Linear Analysis Tool Edit dialog box.

Open Edit Dialog Box

To open the Edit dialog box for editing a linearization set, either:

• In the Linear Analysis Workspace, double-click the I/O set.
• Click either the Exact Linearization or Frequency Response Estimation tab. If the I/O

set is selected in the Analysis I/Os menu, click the edit icon  next to the Analysis
I/Os menu.

Either of these actions opens the I/O set edit dialog box for the linearization I/O set. You
can now edit the I/O set as needed. When you have finished editing, click  to close the
dialog box and save your changes.

Tip To highlight in the Simulink model the blocks that are included in the linearization
specified by the current list of Analysis I/Os, click Highlight.

Add Signal to I/O Set

To add a linearization input point, output point, or loop opening to the linearization I/O
set:

1 In your Simulink model, select one or more signals that you want to add to the
linearization I/O set.
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The selected signals appear in the Create linearization I/O set dialog box under
Currently selected signals.

2 In the Create linearization I/O set dialog box, click one or more signal names under
Currently selected signals.

3 Click Add. The signal appears in the list of Analysis I/Os.
4 Select the linear analysis point type for a signal from the Configuration drop-down

list for that signal. For example:

• If you want the selected signal to be a linearization output point, select Output
Measurement.

• If you want the signal to be an open-loop linearization output point, select Open-
loop Output.

Remove Signal from I/O Set

To remove a linearization input point, output point, or loop opening from the
linearization I/O set:

1 Select the signal in the list of Analysis I/Os.

2 Click Delete to remove the signal from the linearization I/O set.



 Code Alternative

2-25

Change Linear Analysis Point Type

To change the type of linear analysis point type for a signal, locate the signal in the list
of Analysis I/Os. Then, use the Configuration drop-down list for the signal to define the
type of linear analysis point.

For example, if you want the signal to be a linearization output point, select Output
Measurement from the Configuration drop-down list. If you want the signal to be an
open loop output point, select Open-loop Output.

Select Bus Elements as Linear Analysis Points

This example shows how to select individual elements in a bus signal as linearization
input/output (I/O) points. Linearization I/O points define the portion of the model to
linearize.

Code Alternative

Use linio to specify model signals as linearization I/O points and loop openings. For
examples and additional information, see the linio reference page.

1 Open Simulink model.

sys = 'scdbusselection';

open_system(sys)

2 In the Simulink model window, define portion of the model to linearize:

a Right-click the COUNTERBUS signal, and select Linear Analysis Points >
Select Bus Element.

This option appears only if Mux blocks used to create bus signals in the
Configuration Parameters > Diagnostics  > Connectivity  pane is error.
Otherwise, right-clicking the bus signal lets you specify all elements in the bus
as linearization input or output points.

The Select Linearization Points in the Bus dialog box opens, which shows
signals contained in the COUNTERBUS bus signal.
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b In the Bus Hierarchy area, expand the bus named limits. Then, select
upper_saturation_limit.

Tip For large buses, you can enter search text for filtering element names in the
Filter by name edit box. The name match is case-sensitive. Additionally, you
can enter a MATLAB “regular expression”.
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To modify the filtering options, click  adjacent to the Filter by
name edit box.

Filtering Options

• Enable regular expression

MATLAB “regular expression” for filtering signal names. For
example, entering t$ displays all signals whose names end with a
lowercase t (and their immediate parents).

• Show filtered results as a flat list
Flat list format to display the list of filtered signals.
By default, filtered signals are displayed using a tree format. The
flat list format uses dot notation to reflect the hierarchy of bus
signals.

c Click Add.

The selected signal now appears in the Linearization Inputs/Outputs area,
and is configured as a linearization input point.



2 Linearization

2-28

Click OK.
d In the Simulink model window, right-click the OUTPUTBUS signal, and select

Linear Analysis Points > Select Bus Element.
e In the Bus Hierarchy area, expand the bus named limits, and select

upper_saturation_limit.
f Click Add to add the selected signal to the Linearization Inputs/Outputs

area.
g Select Output Measurement in the Configuration column.

Click OK.
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Tip In the Simulink model window, select Display > Signals & Ports >
Linearization Indicators to view the linearization I/O markers.

You can select multiple elements in the same bus with different I/O types. The 
marker appears on the bus signal to indicate multiple bus element selections with
different I/O types.

3 In the Simulink model window, select Analysis > Control Design > Linear
Analysis.

The Linear Analysis Tool for the model opens.

Click the Exact Linearization tab. Click  adjacent to the Analysis I/Os list
to see the bus elements selected as linearization I/O points.

4 In the Exact Linearization tab, click  to linearize the model using the model
initial condition as the operating point.

Related Examples

• “Linearize Simulink Model at Model Operating Point” on page 2-48
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• “Plant Linearization” on page 2-31
• “Open-Loop Response of Control System for Stability Margin Analysis” on page

2-42
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Plant Linearization

This example shows how to use the Linear Analysis Tool to linearize a plant subsystem
at the model operating point. The model operating point consists of the model initial
state values and input signals.

Use this simpler approach instead of defining linearization I/O points when the plant is a
subsystem or a block.

Code Alternative

Use linearize. For examples and additional information, see the linearize reference
page.

1 Open a Simulink model.

sys = 'watertank';

open_system(sys)

2 Open the Linear Analysis Tool.

In the Simulink model window, right-click the Water-Tank System block and select
Linear Analysis > Linearize Block.

3 View the block selected for linearization.

Click  adjacent to the Analysis I/Os drop-down menu.

The Water Tank System block is highlighted.
4 In the Plot Result drop-down menu, select New Bode.
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5 Linearize the plant.

Click .

The Bode plot of the linearized plant appears.
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The linearization result, linsys1, appears in the Linear Analysis Workspace.
6 View the resulting linear plant model.

In the Linear Analysis tab, choose linsys1 from the Select Result list. In the
Select Report list, choose Show result details.

The Linearization results dialog box for linsys1 opens.
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Tip Drag and drop linsys1 from the Linear Analysis Workspace to the
MATLAB Workspace to export it to the base workspace for further analysis.

7 Close the Simulink model.

bdclose(sys);

Related Examples

• “Linearize Simulink Model at Model Operating Point” on page 2-48
• “Open-Loop Response of Control System for Stability Margin Analysis” on page

2-42
• “Visualize Bode Response of Simulink Model During Simulation” on page 2-53
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Managing Signals in Control System Analysis and Design

In this section...

“Specifying Analysis Points for Models Created at the Command Line” on page 2-36
“Specifying Analysis Points for Models Created in Simulink” on page 2-37
“Referring to Analysis Points for Control System Analysis and Tuning” on page 2-40

Whether you model your control system in MATLAB or Simulink, you can use analysis
points to gain access to internal signals, perform open-loop analysis, or specify
requirements for controller tuning. Analysis points mark points of interest in the model.
In the block diagram representation, a point of interest is a signal flowing from one block
to another. In Simulink, analysis points are attached to the outports of Simulink blocks.
For example, the reference signal, r, and the control signal, u, are analysis points of the
following simple feedback loop model, ex_scd_analysis_pts1:

Figure 1: Simple Feedback Loop

Analysis points serve three purposes:

• Input: The software interprets an additive input signal at a point, for example, to
model a disturbance at the plant input, u

• Output: The software measures the signal value at a point, for example, to study the
impact of this disturbance on the plant output, y

• Loop Opening: The software interprets a break in the signal flow (opening) at a
point, for example, to study the open-loop response at the plant input, u

You can apply these purposes concurrently, for example, to compute the open-loop
response from u to y. When used concurrently, the software always applies the purposes
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in a specific sequence: output (measurement), then loop opening, then input (see Figure
2).

in
out

Figure 2: Analysis Point as Input, Output, and Loop Opening

Analysis points provide convenient access to open-loop and closed-loop responses.
For example, suppose T is a model of the closed-loop system in the model
ex_scd_analysis_pts1, and u and y are marked as analysis points. You can plot the
closed-loop response to a step disturbance, du, at the plant input using

getIOTransfer(T,'u','y');

Analysis points are also useful to specify design requirements when tuning control
systems with the systune function (requires a Robust Control Toolbox license). For
example, you can create a requirement that attenuates disturbances at the plant input
by a factor of 10 (20 dB) or more.

Req = TuningGoal.Rejection('u',10);

Specifying Analysis Points for Models Created at the Command Line

Construct an LTI model of the block diagram in Figure 1.

G = tf(10,[1 3 10]);

C = pid(0.2,1.5);

T = feedback(G*C,1);

With this model, you can simulate the closed-loop response from r to y. However, you
cannot analyze the open-loop response at the plant input or simulate the rejection of a
step disturbance at the plant input. To enable such analysis, mark the signal u as an
analysis point by inserting an AnalysisPoint block between the plant and controller.

AP = AnalysisPoint('u');
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T = feedback(G*AP*C,1);

The location, u, is now available for analysis, and you can plot the open-loop response at
u.

bodeplot(getLoopTransfer(T,'u',-1))

Recall that the AnalysisPoint block includes an implied open/closed switch that
behaves as shown in Figure 2 for analysis purposes. By default, this switch is closed
when computing closed-loop responses. For example, plot the closed-loop response to a
step disturbance at the plant input.

T.OutputName = 'y';

stepplot(getIOTransfer(T,'u','y'))

Specifying Analysis Points for Models Created in Simulink

In Simulink, you can mark analysis points either explicitly in the block diagram, or
programmatically using the addPoint command for slLinearizer or slTuner
interfaces.

To mark an analysis point explicitly in the block diagram, right-click on the signal
and use the Linear Analysis Points menu. Select one of the closed-loop analysis
types, unless you also need to add a permanent opening at this location. Closed-loop
analysis types include Input Perturbation, Output Measurement, Sensitivity, and
Complementary Sensitivity. The selected type does not affect analysis functions, like
getIOTransfer, and tuning goals, like TuningGoal.StepTracking.
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Figure 3: Marking Analysis Points in a Simulink Model
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To mark analysis points programmatically, use addPoint for the slLinearizer or
slTuner interfaces. Specify the point of interest using the block path, port number, and
bus element, if applicable. For example, consider the ex_scd_analysis_pts2 model.

Figure 4: Simple Feedback Loop in Simulink

Figure 5: 2DOF Controller Subsystem

Mark the u and Feedfordward term signals as analysis points.

open_system('ex_scd_analysis_pts2');

ST = slLinearizer('ex_scd_analysis_pts2');
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addPoint(ST,'ex_scd_analysis_pts2/2DOF Controller',1)

addPoint(ST,'ex_scd_analysis_pts2/2DOF Controller/Kff',1)

For convenience, you can also designate points of interest as analysis points using one of
the following abbreviations:

• Signal name, for example:

addPoint(ST,{'u','r'})

• Block name and port number, for example:

addPoint(ST,'ex_scd_analysis_pts2/Plant/1')

• Block name and outport name, for example:

addPoint(ST,'ex_scd_analysis_pts2/2DOF Controller/Control')

• End of the full block name when unambiguous, for convenience, for example:

addPoint(ST,'Controller/1')

addPoint(ST,{'Setpoint','Noise'})

Finally, you can specify analysis points using linearization I/O objects (see linio). For
example:

ios = [...

   linio('ex_scd_analysis_pts2/Setpoint',1,'input'),...

   linio('ex_scd_analysis_pts2/Plant',1,'output')];

addPoint(ST,ios)

As when you use the Linear Analysis Points to mark analysis points, the actual I/
O type is ignored by analysis functions, like getIOTransfer, and tuning goals, like
TuningGoal.StepTracking. However, an I/O type that implies a loop opening, for
instance loopbreak or openinput, imposes a permanent loop opening at the point. This
permanent opening remains in force throughout analysis and tuning.

Referring to Analysis Points for Control System Analysis and Tuning

Once you have marked analysis points, you can analyze the response at any of these
points using functions like getIOTransfer and getLoopTransfer. You can also create
tuning goals that constraint the system response at these points. The tools to perform
these operations operate in a similar manner for models created at the command line and
models created in Simulink.

Use the getPoints function to get a list of all available analysis points.
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getPoints(T) % Model created at the command line

getPoints(ST) % Model created in Simulink
®

For closed-loop models created at the command line, you can also use the model input
and output names as inputs to functions such as getIOTransfer. For example:

stepplot(getIOTransfer(T,'u','y'))

Similarly, you can use these names to compute open-loop responses or create tuning
goals for systune.

L = getLoopTransfer(T,'u',-1);

R = TuningGoal.Margins('u',10,60);

The same applies to models created in Simulink, with the added convenience that
you can use any unambiguous abbreviation of the analysis point names returned by
getPoints. For example:

L = getLoopTransfer(ST,'u',-1);

stepplot(getIOTransfer(ST,'r','Plant'))

s = tf('s');

R = TuningGoal.Gain('Noise','Feedforw',1/(s+1));

Finally, if some analysis points are vector-valued signals or multi-channel locations, you
can use indices to select particular entries or channels. For example, suppose u is a two-
entry vector in the model of Figure 2. You can compute the open-loop response of the
second channel and measure the impact of a disturbance on the first channel using:

% Build closed-loop model of MIMO feedback loop

G = ss([-1 0.2;0 -2],[1 0;0.3 1],eye(2),0);

C = pid(0.2,0.5);

AP = AnalysisPoint('u',2);

T = feedback(G*AP*C,eye(2));

T.OutputName = 'y';

L = getLoopTransfer(T,'u(2)',-1);

stepplot(getIOTransfer(T,'u(1)','y'))

See Also
addPoint | AnalysisPoint | getPoints
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Open-Loop Response of Control System for Stability Margin
Analysis

In this section...

“What Is Open-Loop Response?” on page 2-42
“Compute Open-Loop Response” on page 2-43

What Is Open-Loop Response?

Open-loop response is the combined response of the plant and the controller, excluding
the effect of the feedback loop. For example, the next block diagram shows a single-loop
control system.

P(s)C(s)+ -

Open-loop response corresponds to the linear response of the plant and the controller. If
C(s) and P(s) are linear, the corresponding linear systems is C(s)P(s).

C(s)P(s)

In Simulink Control Design, the linearization I/O points and the loop opening that
correspond to open-loop response look something like this:
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However, if there is no loop opening at the output of Water-Tank System block, the
resulting linear model is different:

P(s)

1 + C(s)P(s)

Compute Open-Loop Response

This example shows how to use the Linear Analysis Tool to analyze the open-loop
response of a control system.

Compute a linear model of the combined controller-plant system without the effects of
the feedback signal. Use a Bode plot of the resulting linear model to see the open-loop
response.

1 Open Simulink model.

sys = 'watertank';

open_system(sys)

The Water-Tank System block represents the plant in this control system and
contains all of the system nonlinearities.
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2 Open the Linear Analysis Tool for the model.

In the Simulink Editor, select Analysis > Control Design > Linear Analysis.
3 In the Simulink Editor, define the portion of the model to linearize:

a Right-click the PID Controller block input signal (the output of the Sum block).
Select Linear Analysis Points > Input Perturbation.

b Right-click the Water-Tank System output signal, and select Linear Analysis
Points > Open-loop Output.

Annotations appear in the model indicating which signals are designated as
linearization I/O points.

Tip Alternatively, if you do not want to introduce changes to the Simulink model,
you can specify the linearization I/O points in the Linear Analysis Tool. See “Specify
Portion of Model to Linearize in Linear Analysis Tool”.

4 In the Plot Result list of the Linear Analysis Tool, select New Bode.
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5 Linearize the model.

Click .

The Bode plot of the open-loop response appears.
6 View the minimum stability margins for the model.

Right-click the plot and select Characteristics > Minimum Stability Margins.
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The Bode plot displays the phase margin marker. Click the marker to show a data
tip that contains the phase margin value.
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7 Close Simulink model.

bdclose(sys);

Related Examples

• “Linearize Simulink Model at Model Operating Point” on page 2-48
• “Plant Linearization” on page 2-31
• “Visualize Bode Response of Simulink Model During Simulation” on page 2-53
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Linearize Simulink Model at Model Operating Point
This example shows how to use the Linear Analysis Tool to linearize a model at the
operating point specified in the model. The model operating point consists of the model
initial state values and input signals.

The Linear Analysis Tool linearizes at the model operating point by default. If you
want to specify a different operating point for linearization, see “Linearize at Trimmed
Operating Point”.

Code Alternative
Use linearize. For examples and additional information, see the linearize reference
page.

1 Open Simulink model.

sys = 'watertank';

open_system(sys)

The Water-Tank System block represents the plant in this control system and
includes all of the system nonlinearities.

2 Open the Linear Analysis Tool for the model.

In the Simulink Editor, select Analysis > Control Design > Linear Analysis.
3 In the Simulink Editor, define the portion of the model to linearize:

a Right-click the PID Controller block output signal, which is the input to the
plant. Select Linear Analysis Points > Input Perturbation.

b Right-click the Water-Tank System output signal, and select Linear Analysis
Points > Open-loop Output.
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Inserting this open loop point removes the effects of the feedback signal on the
linearization without changing the model operating point.

When you add linear analysis points, marker appear at their locations in the model.

Tip Alternatively, if you do not want to introduce changes to the Simulink model,
you can specify the linearization I/O points in the Linear Analysis Tool. See “Specify
Portion of Model to Linearize in Linear Analysis Tool”.

4 In the Plot Result list, select a visualization.

For example, select New Bode.
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5 Linearize the model.

Click .

The Bode plot of the linearized system appears.
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The linearized system, linsys1 appears in the Linear Analysis Workspace.

linsys1 represents the system linearized at the model operating point. If you do not
specify an operating point for linearization, the Linear Analysis Tool uses the model
operating point by default.

6 Close Simulink model.

bdclose(sys);
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Related Examples
• “Linearize at Trimmed Operating Point” on page 2-62
• “Linearize at Simulation Snapshots and Triggered Events” on page 2-67
• “Plant Linearization” on page 2-31
• “Open-Loop Response of Control System for Stability Margin Analysis” on page 2-42
• “Visualize Bode Response of Simulink Model During Simulation” on page 2-53
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Visualize Bode Response of Simulink Model During Simulation

This example shows how to visualize linear system characteristics of a nonlinear
Simulink model during simulation, computed at the model operating point (simulation
snapshot time of 0).

1 Open Simulink model.

For example:

watertank

2 Open the Simulink Library Browser by selecting View > Library Browser in the
model window.

3 Add a plot block to the Simulink model.

a In the Simulink Control Design library, select Linear Analysis Plots.

b Drag and drop a block, such as the Bode Plot block, into the model window.

The model now resembles the following figure.

4 Double-click the block to open the Block Parameters dialog box.
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To learn more about the block parameters, see the block reference pages.
5 Specify the linearization I/O points.
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The linear system is computed for the Water-Tank System.

Tip If your model already contains I/O points, the block automatically detects these

points and displays them. Click  at any time to update the Linearization
inputs/outputs table with I/Os from the model.

a To specify an input:

i
Click  adjacent to the Linearization inputs/outputs table.

The Block Parameters dialog expands to display a Click a signal in the
model to select it area.

Tip You can select multiple signals at once in the Simulink model. All
selected signals appear in the Click a signal in the model to select it
area.
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ii In the Simulink model, click the output signal of the PID Controller
block to select it.

The Click a signal in the model to select it area updates to display the
selected signal.

iii
Click  to add the signal to the Linearization inputs/outputs table.

b To specify an output:

i In the Simulink model, click the output signal of the Water-Tank System
block to select it.

The Click a signal in the model to select it area updates to display the
selected signal.
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ii
Click  to add the signal to the Linearization inputs/outputs table.

iii In the Configuration drop-down list of the Linearization inputs/
outputs table, select Open-loop Output for watertank/Water-Tank
System : 1.

The Linearization inputs/outputs table now resembles the following figure.

c
Click  to collapse the Click a signal in the model to select it area.
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Tip Alternatively, before you add the Linear Analysis Plots block, right-click
the signals in the Simulink model and select Linear Analysis Points > Input
Perturbation and Linear Analysis Points > Open-loop Output. Linearization
I/O annotations appear in the model and the selected signals appear in the
Linearization inputs/outputs table.

6 Save the linear system.

a Select the Logging tab.
b Select the Save data to workspace option, and specify a variable name in the

Variable name field.

The Logging tab now resembles the following figure.

7 Click Show Plot to open an empty plot.
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8
Plot the linear system characteristics by clicking  in the plot window.

Alternatively, you can simulate the model from the model window.

The software linearizes the portion of the model between the linearization input and
output at the default simulation time of 0, specified in Snapshot times parameter
in the Block Parameters dialog box, and plots the Bode magnitude and phase.

After the simulation completes, the plot window resembles the following figure.
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The computed linear system is saved as sys in the MATLAB workspace. sys is a
structure with time and values fields. To view the structure, type:

sys

This command returns the following results:

sys = 

         time: 0

       values: [1x1 ss]

    blockName: 'watertank/Bode Plot'

• The time field contains the default simulation time at which the linear system is
computed.

• The values field is a state-space object which stores the linear system computed at
simulation time of 0. To learn more about the properties of state-space objects, see ss
in the Control System Toolbox documentation.
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(If the Simulink model is configured to save simulation output as a single object, the
data structure sys is a field in the Simulink.SimulationOutput object that contains
the logged simulation data. For more information about data logging in Simulink, see
“Export Simulation Data” and the “Simulink.SimulationOutput class” reference
page.)

Examples and How To

• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-74
• “Visualize Linear System at Trigger-Based Simulation Events” on page 2-85
• “Visualize Linear System of a Continuous-Time Model Discretized During Simulation”

on page 2-81



2 Linearization

2-62

Linearize at Trimmed Operating Point

This example shows how to use the Linear Analysis Tool to linearize a model at a
trimmed steady-state operating point (equilibrium operating point).

The operating point is trimmed by specifying constraints on the operating point
values, and performing an optimization search that meets these state and input value
specifications.

Code Alternative

Use linearize. For examples and additional information, see the linearize reference
page.

1 Open the Simulink model.

sys = 'magball';

open_system(sys)

2 Open the Linear Analysis Tool for the model.

In the Simulink model window, select Analysis > Control Design > Linear
Analysis.

3 In the Simulink model window, define the portion of the model to linearize for this
linearization task:

a Right-click the Controller block output signal (input signal to the plant). Select
Linear Analysis Points > Input Perturbation.

b Right-click the Magnetic Ball Plant output signal, and select Linear Analysis
Points > Open-loop Output.
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Annotations appear in the model indicating which signals are designated as
linearization I/O points.

Tip Alternatively, if you do not want to introduce changes to the Simulink model,
you can specify the linearization I/O points in the Linear Analysis Tool. See “Specify
Portion of Model to Linearize in Linear Analysis Tool”.

4 In the Linear Analysis Tool, select Trim model, in the Operating Point list.

Click Specifications.

By default, all model states are specified to be at equilibrium (as shown in the
Steady State column).
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5 In the States tab, select Known for the height state.

The height of the ball should match the reference signal height. This height value
should remain fixed during the optimization.

6 Enter 0 for the minimum bound of the Current block state.
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7 Compute the operating point.

Click .

A new variable, op_trim1, appears in the Linear Analysis Workspace.

8 Select the operating point to be used for linearization.

In the Exact Linearization tab, select op_trim1 from the Operating Point list.
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9 Linearize the model at the specified operating point.

Click .

Related Examples

“Steady-State Operating Points (Trimming) from Specifications” on page 1-13
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Linearize at Simulation Snapshots and Triggered Events
In this section...

“Linearize at Simulation Snapshot” on page 2-67
“Linearize at Triggered Simulation Events” on page 2-70
“Visualize Linear System at Multiple Simulation Snapshots” on page 2-74
“Visualize Linear System of a Continuous-Time Model Discretized During Simulation”
on page 2-81
“Visualize Linear System at Trigger-Based Simulation Events” on page 2-85

Linearize at Simulation Snapshot

This example shows how to use the Linear Analysis Tool to linearize a model by
simulating the model and extracting the state and input levels of the system at specified
simulation times.

Code Alternative
Use linearize. For examples and additional information, see the linearize reference
page.

1 Open the Simulink model.

sys = 'watertank';

open_system(sys)

2 Open the Linear Analysis Tool for the model.

In the Simulink model window, select Analysis > Control Design > Linear
Analysis.
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3 In the Simulink model window, define the portion of the model to linearize:

• Right-click the PID Controller block output signal (input signal to the plant
model). Select Linear Analysis Points > Input Perturbation.

• Right-click the Water-Tank System output signal, and select Linear Analysis
Points > Open-loop Output.

4 In the Linear Analysis Tool, select Take simulation snapshot in the Operating
Point list.

5 In the Simulation Snapshot Times field, enter 10 to extract the operating point at
this simulation time.

6 Take a snapshot of the system at the specified time.

Click .

The operating point op_snapshot1 appears in the Linear Analysis Workspace.

Tip To linearize the model at several operating points, specify a vector of simulation
times in the Simulation Snapshot Times field. For example, entering [1 10]
results in two linear models, one linearized at t = 1 and the other at t = 10.

7 In the Exact Linearization tab, select op_snapshot1 in the Operating Point
list.

8 In the Plot Result list, select a visualization.
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Select New Bode.

9 Linearize the model.

Click .

The Bode plot of the linearized system appears. This Bode plot looks like a stable
first-order response, as expected.
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10 Double click linsys1 in the Linear Analysis Workspace to see the state space
representation of the linear model.

11 Close Simulink model.

bdclose(sys);

Related Examples
• “Linearize at Triggered Simulation Events” on page 2-70
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-74
• “Visualize Linear System of a Continuous-Time Model Discretized During Simulation”

on page 2-81
• “Visualize Linear System at Trigger-Based Simulation Events” on page 2-85

Linearize at Triggered Simulation Events

This example shows how to use the Linear Analysis Tool to linearize a model at specific
events in time. Linearization events can be trigger-based events or function-call events.
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Specifically, the model will be linearized at the steady-state operating points 2500, 3000,
and 3500 rpm.

1 Open Simulink model.

sys = 'scdspeedtrigger';

open_system(sys)

To help identify when the system is at steady state, the Generate settling time
events block generates settling events. This block sends rising edge trigger signals to
the Operating Point Snapshot block when the engine speed settles near 2500, 3000,
and 3500 rpm for a minimum of 5 seconds.
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The model already includes the Trigger-Based Operating Point Snapshot block from
the Simulink Control Design library. This block linearizes the model when it receives
rising edge trigger signals from the Generate settling time events block.

2 Compute the steady-state operating point at 60 time units.

op = findop(sys,60);

This command simulates the model for 60 time units, and extracts the operating
points at each simulation event that occurs during this time interval.

3 Define the portion of the model to linearize.

io(1) = linio('scdspeedtrigger/Reference Steps',1,'input');

io(2) = linio('scdspeedtrigger/rad//s to rpm',1,'output');

4 Linearize the model.
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linsys = linearize(sys,op(1:3),io);

5 Compare linearized models at 500, 3000, and 3500 rpm using Bode plots of the
closed-loop transfer functions.

bode(linsys);

Related Examples

• “Linearize at Simulation Snapshot” on page 2-67
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-74
• “Visualize Linear System of a Continuous-Time Model Discretized During Simulation”

on page 2-81
• “Visualize Linear System at Trigger-Based Simulation Events” on page 2-85
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Visualize Linear System at Multiple Simulation Snapshots

This example shows how to visualize linear system characteristics of a nonlinear
Simulink model at multiple simulation snapshots.

1 Open Simulink model.

For example:

watertank

2 Open the Simulink Library Browser by selecting View > Library Browser in the
model window.

3 Add a plot block to the Simulink model.

a In the Simulink Control Design library, select Linear Analysis Plots.
b Drag and drop a block, such as the Gain and Phase Margin Plot block, into the

Simulink model window.

The model now resembles the following figure.

4 Double-click the block to open the Block Parameters dialog box.

To learn more about the block parameters, see the block reference pages.
5 Specify the linearization I/O points.

The linear system is computed for the Water-Tank System.
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Tip If your model already contains I/O points, the block automatically detects these

points and displays them. Click  at any time to update the Linearization
inputs/outputs table with I/Os from the model.

a To specify an input:

i
Click  adjacent to the Linearization inputs/outputs table.

The Block Parameters dialog expands to display a Click a signal in the
model to select it area.

ii In the Simulink model, click the output signal of the PID Controller
block to select it.

The Click a signal in the model to select it area updates to display the
selected signal.
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Tip You can select multiple signals at once in the Simulink model. All
selected signals appear in the Click a signal in the model to select it
area.

iii
Click  to add the signal to the Linearization inputs/outputs table.

b To specify an output:

i In the Simulink model, click the output signal of the Water-Tank System
block to select it.

The Click a signal in the model to select it area updates to display the
selected signal.
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ii
Click  to add the signal to the Linearization inputs/outputs table.

iii In the Configuration drop-down list of the Linearization inputs/
outputs table, select Open-loop Output for watertank/Water-Tank
System : 1.

The Linearization inputs/outputs table now resembles the following figure.

c
Click  to collapse the Click a signal in the model to select it area.
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Tip Alternatively, before you add the Linear Analysis Plots block, right-click
the signals in the Simulink model and select Linear Analysis Points > Input
Perturbation and Linear Analysis Points > Open-loop Output. Linearization
I/O annotations appear in the model and the selected signals appear in the
Linearization inputs/outputs table.

6 Specify simulation snapshot times.

a In the Linearizations tab, verify that Simulation snapshots is selected in
Linearize on.

b In the Snapshot times field, type [0 1 5].

7 Specify a plot type to plot the gain and phase margins. The plot type is Bode by
default.

a

b Select Nichols in Plot type
c Click Show Plot to open an empty Nichols plot.

8 Save the linear system.

a Select the Logging tab.
b Select the Save data to workspace option and specify a variable name in the

Variable name field.

The Logging tab now resembles the following figure.
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9
Plot the gain and phase margins by clicking  in the plot window.

The software linearizes the portion of the model between the linearization input and
output at the simulation times of 0, 1 and 5 and plots gain and phase margins.

After the simulation completes, the plot window resembles the following figure.
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Tip Click  to view the legend.

The computed linear system is saved as sys in the MATLAB workspace. sys is a
structure with time and values fields. To view the structure, type:

sys

This command returns the following results:

sys = 

         time: [3x1 double]

       values: [4-D ss]

    blockName: 'watertank/Gain and Phase Margin Plot'

• The time field contains the simulation times at which the model is linearized.
• The values field is an “array of state-space objects” which store the linear systems

computed at the specified simulation times.

(If the Simulink model is configured to save simulation output as a single object, the
data structure sys is a field in the Simulink.SimulationOutput object that contains
the logged simulation data. For more information about data logging in Simulink, see
“Export Simulation Data” and the “Simulink.SimulationOutput class” reference
page.)

Examples and How To

• “Visualize Bode Response of Simulink Model During Simulation” on page 2-53
• “Visualize Linear System at Trigger-Based Simulation Events” on page 2-85
• “Visualize Linear System of a Continuous-Time Model Discretized During Simulation”

on page 2-81
• “Linearize at Simulation Snapshot” on page 2-67
• “Linearize at Triggered Simulation Events” on page 2-70
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Visualize Linear System of a Continuous-Time Model Discretized During
Simulation

This example shows how to discretize a continuous-time model during simulation and
plot the model's discretized linear behavior.

1 Open the Simulink model:

scdcstr

In this model, the Bode Plot block has already been configured with:

• Input point at the coolant temperature input Coolant Temp
• Output point at the residual concentration output CA
• Settings to linearize the model on a rising edge of an external trigger. The trigger

signal is modeled in the Linearization trigger signal block in the model.
• Saving the computed linear system in the MATLAB workspace as

LinearReactor.

To view these configurations, double-click the block.
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To learn more about the block parameters, see the block reference pages.
2 Specify the sample time to compute the discrete-time linear system.
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a Click  adjacent to Algorithm Options.

The option expands to display the linearization algorithm options.

b Specify a sample time of 2 in the Linear system sample time field.

To learn more about this option, see the block reference page.
3 Click Show Plot to open an empty Bode plot window.
4

Plot the Bode magnitude and phase by clicking  in the plot window.

During simulation, the software:

• Linearizes the model on encountering a rising edge.
• Converts the continuous-time model into a discrete-time linear model with a

sample time of 2. This conversion uses the default Zero-Order Hold method to
perform the sample time conversion.

The software plots the discrete-time linear behavior in the Bode plot window.
After the simulation completes, the plot window resembles the following figure.
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The plot shows the Bode magnitude and phase up to the Nyquist frequency, which
is computed using the specified sample time. The vertical line on the plot represents
the Nyquist frequency.

Examples and How To

• “Visualize Bode Response of Simulink Model During Simulation” on page 2-53
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-74
• “Visualize Linear System at Trigger-Based Simulation Events” on page 2-85
• “Linearize at Simulation Snapshot” on page 2-67
• “Linearize at Triggered Simulation Events” on page 2-70
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Visualize Linear System at Trigger-Based Simulation Events

Plotting Linear System Characteristics of a Chemical Reactor shows how to plot the Bode
magnitude and phase of a reactor. The reactor transitions through different operating
points corresponding to trigger-based simulation events.

Examples and How To

• “Visualize Bode Response of Simulink Model During Simulation” on page 2-53
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-74
• “Visualize Linear System of a Continuous-Time Model Discretized During Simulation”

on page 2-81
• “Linearize at Simulation Snapshot” on page 2-67
• “Linearize at Triggered Simulation Events” on page 2-70
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Ordering States in Linearized Model

In this section...

“Control State Order of Linearized Model using Linear Analysis Tool” on page 2-86
“Control State Order of Linearized Model using MATLAB Code” on page 2-89

Control State Order of Linearized Model using Linear Analysis Tool

This example shows how to control the order of the states in your linearized model. This
state order appears in linearization results.

1 Open and configure the model for linearization.

sys = 'magball';

open_system(sys)

sys_io(1)=linio('magball/Controller',1,'input');

sys_io(2)=linio('magball/Magnetic Ball Plant',1,'openoutput');

setlinio(sys,sys_io);

opspec = operspec(sys);

op = findop(sys,opspec);

These commands specify the plant linearization and compute the steady-state
operating point.

2 Open the Linear Analysis Tool for the model.

In the Simulink model window, select Analysis > Control Design > Linear
Analysis.

3 Open the Options for exact linearization dialog box.

In the Exact Linearization tab, click Options.
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4 In the State Ordering tab, select the Enable state ordering check box.
5 Specify the desired state order using the Move Up and Move Down buttons.

Tip If you change the model while its Linear Analysis Tool is open, click Sync with
Model to update the list of states.
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6 Linearize the model.

In the Linear Analysis Tool, click .

A new linearized model, linsys1, appears in the Linear Analysis Workspace.
7 View the order of the model states for the linearized model by opening the

Linearization result dialog box.

Click the Linear Analysis tab. Choose Show result details in the Select Report
list.
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The linear model states appear in the specified order.

Control State Order of Linearized Model using MATLAB Code

This example shows how to control the order of the states in your linearized model. This
state order appears in linearization results.

1 Load and configure the model for linearization.

sys = 'magball';

load_system(sys);

sys_io(1)=linio('magball/Controller',1,'input');

sys_io(2)=linio('magball/Magnetic Ball Plant',1,'openoutput');

opspec = operspec(sys);

op = findop(sys,opspec);

These commands specify the plant linearization and compute the steady-state
operating point.

2 Linearize the model, and show the linear model states.
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linsys = linearize(sys,sys_io);

linsys.StateName

The linear model states are in default order. The linear model includes only the
states in the linearized blocks, and not the states of the full model.

ans = 

    'height'

    'Current'

    'dhdt'

3 Define a different state order.

stateorder = {'magball/Magnetic Ball Plant/height';...

              'magball/Magnetic Ball Plant/dhdt';...

              'magball/Magnetic Ball Plant/Current'};

4 Linearize the model again and show the linear model states.

linsys = linearize(sys,sys_io,'StateOrder',stateorder);

linsys.StateName

The linear model states are now in the specified order.

ans = 

    'height'

    'dhdt'

    'Current'
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Time-Domain Validation of Linearization

In this section...

“Validate Linearization in Time Domain” on page 2-91
“Choosing Time-Domain Validation Input Signal” on page 2-93

Validate Linearization in Time Domain

This example shows how to validate linearization results by comparing the simulated
output of the nonlinear model and the linearized model.

1 Linearize Simulink model.

For example:

sys = 'watertank';

load_system(sys);

sys_io(1)=linio('watertank/PID Controller',1,'input');

sys_io(2)=linio('watertank/Water-Tank System',1,'openoutput');

opspec = operspec(sys);

op = findop(sys,opspec);

linsys = linearize(sys,op,sys_io);

If you linearized your model in the Linear Analysis Tool, you must export the linear
model to the MATLAB workspace.

2 Create input signal for validation. For example, a step input signal:

input = frest.createStep('Ts',0.1,...

                         'StepTime',1,...

                         'StepSize',1e-5,...

                         'FinalTime',500);

3 Simulate the Simulink model using the input signal.

[~,simout] = frestimate(sys,op,sys_io,input);

simout is the simulated output of the nonlinear model.
4 Simulate the linear model sys, and compare the time-domain responses of the linear

and nonlinear Simulink model.

frest.simCompare(simout,linsys,input)
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The step response of the nonlinear model and linearized model are close, which
validates that the linearization is accurate.

5 Increase the amplitude of the step signal from 1.0e-005 to 1.

 input = frest.createStep('Ts',0.1,...

                          'StepTime',1,...

                          'StepSize',1,...

                          'FinalTime',500);

6 Repeat the frequency response estimation with the increased amplitude of the input
signal, and compare this time response plot to the exact linearization results.

[~,simout2] = frestimate(sys,op,sys_io,input);

frest.simCompare(simout2,linsys,input)

legend('FRESTIMATE results with Custom input',...

   'Linear simulation of linsys with Custom input',...

   'Location','SouthEast')
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The step response of linear system you obtained using exact linearization does not
match the step response of the estimated frequency response with large input signal
amplitude.

This result indicates that linear model obtained using exact linearization does not
behave linearly you begin to deviate from the specified operating point.

Choosing Time-Domain Validation Input Signal

For time-domain validation of linearization, use frest.createStep to create a step
signal. Use the step signal as an input to frest.simCompare, which compares the
simulated output of the nonlinear model and the linearized model.

The step input helps you assess whether the linear model accurately captures the
dominant time constants as it goes through the step transients.
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The step input also shows whether you correctly captured the DC gain of the Simulink
model by comparing the final value of the exact linearization simulation with the
frequency response estimation.
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Frequency-Domain Validation of Linearization

In this section...

“Validate Linearization in Frequency Domain using Linear Analysis Tool” on page
2-95
“Choosing Frequency-Domain Validation Input Signal” on page 2-99

Validate Linearization in Frequency Domain using Linear Analysis Tool

This example shows how to validate linearization results using an estimated linear
model.

In this example, you linearize a Simulink model using the model initial conditions. You
then estimate the frequency response of the model using the same operating point (model
initial condition). Finally, you compare the estimated response to the exact linearization
result.

Step 1. Linearize Simulink model.

• Open a Simulink model.

sys = 'scdDCMotor';

open_system(sys);

• Open the Linear Analysis Tool for the model.

In the Simulink model window, select Analysis > Control Design > Linear
Analysis.

• Select a visualization for the linearized model.

In the Plot Result list, choose New Bode.
• Linearize the model.

Click .

A new linearized model, linsys1, appears in the Linear Analysis Workspace.

The software used the model initial conditions as the operating point to generate
linsys1.
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Step 2. Create sinestream input signal.

• Click the Frequency Response Estimation tab.

In this tab, you estimate the frequency response of the model.
• Open the Create sinestream input dialog box.

Select Sinestream from the Input Signal list.

• Initialize the input signal frequencies and parameters based on the linearized model.

Click Initialize frequencies and parameters.
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The Frequency content viewer is populated with frequency points. The software
chooses the frequencies and input signal parameters automatically based on the
dynamics of linsys1.

• In the Frequency content viewer of the Create sinestream input dialog box, select all
the frequency points.

• Modify the amplitude of the input signal.

Enter 1 in the Amplitude box.
• Click OK.

The input signal in_sine1 appears in the Linear Analysis Workspace.

Step 3. Select the plot to display the estimation result.

In the Plot Result list, choose Bode Plot 1 to add the next computed linear system to
Bode Plot 1.
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Step 4. Estimate frequency response.

Click .

The estimated system, estsys1, appears in the Linear Analysis Workspace.

Step 5. Examine estimation results.

Bode Plot 1 now shows the Bode responses for the estimated model and the linearized
model.
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The frequency response for the estimated model matches that of the linearized model.

Choosing Frequency-Domain Validation Input Signal

For frequency-domain validation of linearization, create a sinestream signal. By
analyzing one sinusoidal frequency at a time, the software can ignore some of the impact
of nonlinear effects.

Input Signal Use When See Also

Sinestream All linearization inputs and
outputs are on continuous
signals.

frest.Sinestream

Sinestream with fixed sample
time

One or more of the linearization
inputs and outputs is on a
discrete signal

frest.createFixedTsSinestream

You can easily create a sinestream signal based on your linearized model. The software
uses the linearized model characteristics to accurately predict the number of sinusoid
cycles at each frequency to reach steady state.

When diagnosing the frequency response estimation, you can use the sinestream signal
to determine whether the time series at each frequency reaches steady state.

More About
• “Creating Input Signals for Estimation”
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Visualize Models

In this section...

“Customize Characteristics of Plot in Linear Analysis Tool” on page 2-100
“Print Plot to MATLAB Figure in Linear Analysis Tool” on page 2-100
“Generate Additional Response Plots of Linearized System” on page 2-101
“Add Linear System to Existing Response Plot” on page 2-101

Customize Characteristics of Plot in Linear Analysis Tool

To change the characteristics of an existing plot, such as the title, axis labels, or text
styles:

1 In the Linear Analysis Tool, in the Figures tab, in the select the plot you want to
customize.

2 In the Properties section, click Current plot properties to open the Property
Editor.

3 Edit plot properties as desired. Plots are updated as you make changes. Click Close
when you are finished.

Print Plot to MATLAB Figure in Linear Analysis Tool

You can export a plot from the Linear Analysis Tool to a MATLAB figure window. To do
so:

1 After creating a plot, in the Figures tab, select the plot you want to export.
2 In the Print section, print click Print to Figure.

A MATLAB figure window opens containing the plot.
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Generate Additional Response Plots of Linearized System

This example shows how to generate additional response plots of a linearized system in
the Linear Analysis Tool.

1 Linearize a model and create a plot of the response, such as shown in “Linearize
Simulink Model at Model Operating Point” on page 2-48.

2 In the Linear Analysis Tool, click the Linear Analysis tab.
3 In the Select System list, select the system for which you want to create a new plot.

For example, select linsys1.
4 In the Select Plot list, select a plot to add.

For example, select New Step.

This action generates Step Plot 1, which shows the step response for linsys1.

Tip To view both plots at the same time, select a layout on the View tab, Tiles
section.

Add Linear System to Existing Response Plot

There are two ways to add a linear system from the MATLAB Workspace or the Linear
Analysis Workspace to an existing plot in the Linear Analysis Tool.
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• Drag the linear system onto the plot from the MATLAB Workspace or the Linear
Analysis Workspace.

• On the Linear Analysis tab, in the Plots section, select the linear system from the
Select System menu. Then select the exiting plot from the Select Plot menu.
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Generate MATLAB Code for Linear Analysis Tool Session

This topic shows how to generate MATLAB code for linearization from the Linear
Analysis Tool. You can generate either a MATLAB script or a MATLAB function.
Generated MATLAB scripts are useful when you want to programmatically reproduce a
result you obtained interactively. A generated MATLAB function allows you to perform
multiple linearizations with systematic variations in linearization parameters such as
operating point (batch linearization).

To generate MATLAB code for linearization:

1 In the Linear Analysis Tool, on the Exact Linearization tab, interactively
configure the analysis I/Os, operating point, and other parameters for linearization.

2 Click Linearize  to open the Generate Matlab Code menu.

3 Select the type of code you want to generate:

• Script with current values — Generate a MATLAB script that uses your
configured parameter values and operating point. Select this option when you
want to repeat the same linearization at the MATLAB command line.

• Function with input arguments — Generate a MATLAB function that
takes analysis I/Os and operating points as input arguments. Select this option
when you want to perform multiple linearizations using different parameter
values (batch linearization).

See Also
linearize
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Related Examples
• “Batch Linearize Model for Parameter Value Variations Using linearize”
• “Batch Linearize Model at Multiple Operating Points Using linearize”

More About
• “What Is Batch Linearization?”
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Troubleshooting Linearization

In this section...

“Linearization Troubleshooting Overview” on page 2-105
“Check Operating Point” on page 2-112
“Check Linearization I/O Points Placement” on page 2-112
“Check Loop Opening Placement” on page 2-113
“Check Phase of Frequency Response for Models with Time Delays” on page 2-113
“Check Individual Block Linearization Values” on page 2-113
“Check Large Models” on page 2-116
“Check Multirate Models” on page 2-117

Linearization Troubleshooting Overview

• “Troubleshooting Checklist” on page 2-105
• “State-Space, Transfer Function, and Zero-Pole-Gain Equations of Linear Model” on

page 2-108
• “Linearization Diagnostics” on page 2-110
• “Highlighting Linearized Blocks” on page 2-111

Troubleshooting Checklist

If you do not get good linearization results, use the Linear Analysis Tool’s
troubleshooting tools. For example, use the Diagnostic Messages tab and the
Linearization Inspector tab that are available in the Diagnostic viewer. To open the
Diagnostic viewer, see “Linearization Diagnostics” on page 2-110.



2 Linearization

2-106

You can also use Linearization result dialog box for troubleshooting. To open the
Linearization result dialog box:

1 After linearizing the model, in the Linear Analysis tab of the Linear Analysis Tool,
select the model of interest in the Select Result list.

2 In the Select Report list, select Show result details to open the Linearization
result dialog box for the selected model.

Where to Look Learn More Signs of Successful
Linearization

Signs of Unsuccessful
Linearization

Linear analysis
plot, generated after
linearization.

Create plots, as
described in “Visualize
Models” on page 2-100.

Time- or frequency-
domain plot
characteristics (e.g.,
rise time, bandwidth)
capture system
dynamics.

Response plot
characteristics do not
capture the dynamics of
your system.

For example, Bode plot
gain is too large or too
small, or pole-zero plot
contains unexpected
poles or zeros.

Linear model equations
in the Linearization
result details dialog
box.

View other linear model
representations, as
described in “State-
Space, Transfer
Function, and Zero-

State-space matrices
show expected number
of states.

Results show only D =
0 or D = Inf.
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Where to Look Learn More Signs of Successful
Linearization

Signs of Unsuccessful
Linearization

Pole-Gain Equations of
Linear Model” on page
2-108.

You might see fewer
states in the linear
model than in your
Simulink model
because, in many cases,
the path between
linearization input and
output points do not
reach all the model
states.

Poles and zeros are in
correct location.

Click  in the Exact
Linearization tab.

“Highlighting
Linearized Blocks” on
page 2-111

Highlighted blocks in
the Simulink model
that represent the
portion of the model
you wanted to linearize.

Missing blocks in the
linearization path
might indicate incorrect
linearization input or
output point placement,
or that a critical block
unexpectedly linearizes
to zero, or that critical
blocks are connected in
a path to a block that
linearizes to zero. See
“Check Linearization I/
O Points Placement” on
page 2-112.

Extra blocks in
the linearization
path might indicate
incorrect loop opening
placement. See
“Check Loop Opening
Placement” on page
2-113.
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Where to Look Learn More Signs of Successful
Linearization

Signs of Unsuccessful
Linearization

Linearization
diagnostics in the
Diagnostic Messages
tab of the Diagnostic
viewer.

“Linearization
Diagnostics” on page
2-110

Message indicates
that there are no
problematic blocks in
the linearization.

One or more warnings
about specific
problematic blocks.
See “Check Individual
Block Linearization
Values” on page
2-113.

State-Space, Transfer Function, and Zero-Pole-Gain Equations of Linear Model

You can view the linear model equations in the Linearization result dialog box of the
Linear Analysis Tool.

To open the Linearization result details dialog box:

1 After linearizing the model, in the Linear Analysis tab, select the desired linear
model from the Select Result list.

2 Select Show result details from the Select Report list.
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The Linearization result dialog box opens.

Linear model equations display in state-space form, by default. Alternatively, you
can view the Zero Pole Gain or Transfer Function representation in the Display
linearization result as list.
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Linearization Diagnostics

You can view diagnostic information about the linearization of specific blocks in the
Diagnostic Messages tab of the Diagnostic viewer of the Linear Analysis Tool. The
Diagnostic Messages tab also suggests corrective actions.

Specifically, the Diagnostic Messages tab flags blocks with configuration warnings,
unsupported blocks, and blocks that automatically linearize using numerical
perturbation.

1 In the Linear Analysis Tool, before linearizing the model, select the Launch
Diagnostic Viewer check box in the Exact Linearization tab.

This action ensures that the software logs the diagnostics for the linearized model.

The Diagnostic Messages dialog for the model opens after you linearize the model.

Tip You can also open the Diagnostic viewer for a model by choosing the model in
the Select Result list in the Linear Analysis tab of the Linear Analysis Tool. Then
choose Show diagnostic viewer in the Select Report list.

2 In the Diagnostic Messages dialog box, the Show diagnostics for drop-down list
provides the following options:

• all blocks in the Simulink model — Use when you suspect that certain
blocks are inappropriately excluded from linearization. For example, blocks that
linearize to zero (and shouldn't) are excluded from the linearization path.

• blocks in the linearization path — Use when you are sure that all of
the blocks that should be included in the linearization are included. That is, your
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linearization I/O points and any loop openings are set correctly, and blocks do not
inappropriately linearize to zero.

In this example, the model contains one block that is linearized using numerical
perturbation.

3 To investigate the flagged block, click the block link to highlight the corresponding
block in the model.

If the linearization results are poor, you can use the Linearization Inspector to
explore linearization values of individual blocks.

Highlighting Linearized Blocks

You can highlight blocks in your model to help you diagnose linearization issues.

To highlight all of the blocks included in the linearization:

•
In the Linear Analysis Tool, click  in the Exact Linearization tab.

Blocks that linearize to zero do not appear highlighted in the model. Use the Simulink
Control Design Diagnostic Messages tab to identify the blocks that cause the
linearization of certain blocks to be zero.

To remove highlighting in the model:

• In the Simulink model, select Display> Remove Highlighting.



2 Linearization

2-112

More About

• “Check Linearization I/O Points Placement” on page 2-112.
• “Check Loop Opening Placement” on page 2-113.

Check Operating Point

To diagnose whether you used the correct operating point for linearization, simulate the
model at the operating point you used for linearization.

The linearization operating point is incorrect when the critical signals in the model:

• Have unexpected values.
• Are not at steady state.

To fix problem, compute a steady-state operating point and repeat the linearization at
this operating point.

Related Examples

• “Simulate Simulink Model at Specific Operating Point” on page 1-42
• “Steady-State Operating Points (Trimming) from Specifications” on page 1-13

Check Linearization I/O Points Placement

After linearizing the model, highlight which block are included in the linearization.

Blocks might be missing from the linearization path for different reasons.

Incorrect placement linearization I/O points can result in inappropriately excluded blocks
from linearization. To fix the problem, specify correct linearization I/O points and repeat
the linearization.

Blocks that linearize to zero (and other blocks on the same path) are excluded from
linearization. To fix this problem, troubleshoot linearization of individual blocks, as
described in “Check Individual Block Linearization Values” on page 2-113.
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More About

• “Highlighting Linearized Blocks” on page 2-111
• “Specifying Subsystem, Loop, or Block to Linearize” on page 2-12

Check Loop Opening Placement

Incorrect loop opening placement causes unwanted feedback signals in the linearized
model.

To fix the problem, use block highlighting to identify which blocks are included in the
linearization. If undesired blocks are included, place the loop opening on a different
signal and repeat the linearization.

More About

• “Highlighting Linearized Blocks” on page 2-111
• “Opening Feedback Loops” on page 2-13
• “How the Software Treats Loop Openings”

Check Phase of Frequency Response for Models with Time Delays

When the Bode plot shows insufficient lag in phase for a model containing time delays,
the cause might be Padé approximation of time delays in your Simulink model.

See “Models with Time Delays” on page 2-130.

Check Individual Block Linearization Values

In the Linear Analysis Tool, check the Diagnostic Messages tab of the Diagnostic
viewer for blocks with configuration warnings, unsupported blocks, and blocks that
automatically linearize using numerical perturbation. Click the block link to view the
highlighted block in the model.

After identifying the blocks flagged in the Diagnostic Messages tab, view the
linearization values of these blocks in the Linearization Inspector tab of the
Diagnostic viewer.
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1 In the Linear Analysis Tool, select the linear model for which to display linearization
results.

a In the Linear Analysis tab, use the Select Result list to select the model.
b In the Select Report list, select Show diagnostic viewer to open the

Diagnostic viewer dialog box.

c In the Diagnostic viewer dialog box, click the Linearization Inspector tab.
2 Select the specific subsystem or block.

For example, in the watertank model, select the Water-Tank System subsystem.
Then, in Subsystem Blocks, select the Square Root block.

Tip Right-click anywhere in the Subsystem Blocks list, and select Show only
blocks in linearization path. This action filters the list to include only the
linearized blocks.

3 Plot the response of the linearized block.

For example, right-click the Square Root block under Subsystem Blocks, and
select PlotBlock > Step Plot.
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The step response of the block is displayed.
4 Troubleshoot individual blocks.

Block or Subsystem Type Comment Possible Fix

Incompatible with linearization Some blocks are implemented
without analytic Jacobians
and do not support numerical
perturbation.

Define custom linearization for
affected block as an expression
or function. See “Controlling
Block Linearization” on page
2-120

Event-based subsystem Linearization of event-based
subsystems is zero because
such subsystems do not trigger
during linearization.

When possible, specify a
custom event-based subsystem
linearization as a lumped
average model or periodic
function call subsystem. See
“Event-Based Subsystems
(Externally Scheduled
Subsystems)” on page 2-134.

Simulink blocks in
Discontinuities library, such
as Deadzone, Saturation, and
Quantizer blocks

The Discontinuities library
blocks typically have poor
linearization results when the
operating point that is close to
the discontinuity.

If you want the linearization to
be a gain of 1, select Treat as
gain when linearizing in the
block parameters dialog box.

Define custom linearization for
affected block as an expression
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Block or Subsystem Type Comment Possible Fix

or function. See “Controlling
Block Linearization” on page
2-120.

Model reference block Linearization is not fully
compatible with model
reference blocks with
Accelerator simulation mode.

Always set each Model (model
reference) block to use Normal
simulation mode, instead of
Accelerator mode.

Blocks that linearize
using numerical
perturbation, instead of using
preprogrammed analytic
Jacobians

Blocks that are located near
discontinuous regions, such as
S-Functions, MATLAB function
blocks, or lookup tables,
are sensitive to numerical
perturbation levels. If the
perturbation level is too small,
the block linearizes to zero.

Change the numerical
perturbation level of the block.
See “Perturbation Level of
Blocks Perturbed During
Linearization” on page 2-131.

  Blocks that have nondouble
precision inputs signals and
states linearize to zero.

Use the Linearization
Inspector tab to view the block
linearization.

Convert nondouble-precision
data types to double precision.
See “Linearizing Blocks with
Nondouble Precision Data Type
Signals” on page 2-132

Check Large Models

Troubleshooting the linearization of large models is easier using a divide-and-conquer
strategy.

Systematically linearize specific model components independently and check whether
that component has the expected linearization.

Related Examples

“Plant Linearization” on page 2-31
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Check Multirate Models

Incorrect sampling time and rate conversion method can cause poor linearization results
in multirate models.

• “Change Sampling Time of Linear Model” on page 2-117
• “Change Linearization Rate Conversion Method” on page 2-117

Change Sampling Time of Linear Model

The sampling time of the linear model displays in the Linearization results dialog box,
below the linear equations.

By default, the software chooses the slowest sample time of the multirate model. If the
default sampling time is not appropriate, specify a different linearization sample time
and repeat.

In Linear Analysis Tool:

1 In the Exact Linearization tab, click Options.

The Options for exact linearization dialog box opens.
2 In the Linearization tab, enter the desired sample time in the Enter sample time

(sec) box. Press Enter.

-1 specifies that the software linearizes at the slowest sample rate in the model.

0 specifies a continuous-time linear model.

At the command line, specify the SampleTime linearization option.

For example:

opt = linearizeOptions;

opt.SampleTime = 0.01; 

Change Linearization Rate Conversion Method

When you linearize models with multiple sample times, such as a discrete controller with
a continuous plant, a rate conversion algorithm generates a single-rate linear model. The
rate conversion algorithm affects linearization results.
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In the Linear Analysis Tool:

1 Select Options in the Exact Linearization tab.
2 Click the Linearization tab to select the appropriate rate conversion method from

the Choose rate conversion method list.

Rate Conversion Method When to Use

Zero-Order Hold Use when you need exact discretization
of continuous dynamics in the time-
domain for staircase inputs.

Tustin Use when you need good frequency-
domain matching between a continuous-
time system and the corresponding
discretized system, or between an
original system and the resampled
system.

Tustin with Prewarping Use when you need good frequency
domain matching at a particular
frequency between the continuous-time
system and the corresponding discretized
system, or between an original system
and the resampled system.

Upsampling when possible (Zero-
Order Hold, Tustin, and Tustin with
Prewarping)

Upsample discrete states when possible
to ensure gain and phase matching of
upsampled dynamics. You can only
upsample when the new sample time
is an integer multiple of the sampling
time of the original system. Otherwise,
the software uses an alternate rate
conversion method.

At the command line, specify the RateConversionMethod linearization option.

For example:

opt = linearizeOptions;

opt.RateConversionMethod = 'tustin'; 
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See Also

linearizeOptions

Related Examples

Linearization of Multirate Models

Linearization Using Different Rate Conversion Methods
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Controlling Block Linearization

In this section...

“When You Need to Specify Linearization for Individual Blocks” on page 2-120
“Specify Linear System for Block Linearization Using MATLAB Expression” on page
2-120
“Specify D-Matrix System for Block Linearization Using Function” on page 2-121
“Augment the Linearization of a Block” on page 2-125
“Models with Time Delays” on page 2-130
“Perturbation Level of Blocks Perturbed During Linearization” on page 2-131
“Linearizing Blocks with Nondouble Precision Data Type Signals” on page 2-132
“Event-Based Subsystems (Externally Scheduled Subsystems)” on page 2-134

When You Need to Specify Linearization for Individual Blocks

Simulink blocks with sharp discontinuities produce poor linearization results. Typically,
you must specify a custom linearization for such blocks.

When your model operates in a region away from the point of discontinuity, the
linearization is zero. A block with discontinuity linearizing to zero can cause the
linearization of the system to be zero when this block multiplies other blocks.

For other types of blocks, you can specify the block linearization as a:

• Linear model in the form of a D-matrix
• Control System Toolbox model object
• Robust Control Toolbox uncertain state space or uncertain real object (requires

Robust Control Toolbox software)

Specify Linear System for Block Linearization Using MATLAB Expression

This example shows how to specify the linearization of any block, subsystem, or model
reference without having to replace this block in your Simulink model.

1 Right-click the block in the model, and select Linear Analysis > Specify Selected
Block Linearization.
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The Block Linearization Specification dialog box opens.
2 In the Specify block linearization using a list, select MATLAB Expression.
3 In the text field, enter an expression that specifies the linearization.

For example, specify the linearization as an integrator with a gain of k, G(s) = k/s.

In state-space form, this transfer function corresponds to ss(0,1,k,0).

Click OK.
4 Linearize the model.

Specify D-Matrix System for Block Linearization Using Function

This example shows how to specify custom linearization for a saturation block using a
function.

1 Open Simulink model.

sys = 'configSatBlockFcn';

open_system(sys)

In this model, the limits of the saturation block are -satlimit and satlimit. The
current value of the workspace variable satlimit is 10.
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2 Linearize the model at the model operating point using the linear analysis points
defined in the model. Doing so returns the linearization of the saturation block.

io = getlinio(sys);

linsys = linearize(sys,io)

linsys =

 

  d = 

               Constant

   Saturation         1

 

Static gain.

At the model operating point, the input to the saturation block is 10. This value is
right on the saturation boundary. At this value, the saturation block linearizes to 1.

3 Suppose that you want the block to linearize to a transitional value of 0.5 when the
input falls on the saturation boundary. Write a function that defines the saturation
block linearization to behave this way. Save the function to the MATLAB path.

function blocklin = mySaturationLinearizationFcn(BlockData)

% This function customizes the linearization of a saturation block

% based on the block input signal level, U:

% BLOCKLIN = 0 when |U| > saturation limit

% BLOCKLIN = 1 when |U| < saturation limit

% BLOCKLIN = 1/2 when U = saturation limit

% Get saturation limit.

satlimit = BlockData.Parameters.Value;

% Compute linearization based on the input signal 

% level to the block.

if abs(BlockData.Inputs(1).Values) > satlimit

    blocklin = 0;

elseif abs(BlockData.Inputs(1).Values) < satlimit

    blocklin = 1;

else

    blocklin = 1/2;

end

This configuration function defines the saturation block linearization based on the
level of the block input signal. For input values outside the saturation limits, the
block linearizes to zero. Inside the limits, the block linearizes to 1. Right on the
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boundary values, the block linearizes to the interpolated value of 0.5. The input to
the function, BlockData, is a structure that the software creates automatically
when you configure the linearization of the Saturation block to use the function. The
configuration function reads the saturation limits from that data structure.

4 In the Simulink model, right-click the Saturation block, and select Linear Analysis
> Specify Selected Block Linearization.

The Block Linearization Specification dialog box opens.
5 Check Specify block linearization using one of the following. Choose

Configuration Function from the list.

Configure the linearization function:

a Enter the name you gave to your saturation function. In this example, the
function name is mySaturationLinearizationFcn.

b Specify the function parameters. mySaturationLinearizationFcn requires
the saturation limit value, which the user must specify before linearization.

Enter the variable name satlimit in Parameter Value. Enter the
corresponding descriptive name in the Parameter Name column,
SaturationLimit.

c Click OK.
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Configuring the Block Linearization Specification dialog box updates the model
to use the specified linearization function for linearizing the Saturation Block.
Specifically, this configuration automatically populates the Parameters field of the
BlockData structure, which is the input argument to the configuration function.

Note:  You can add function parameters by clicking . Use  to delete selected
parameters.

Code Alternative

This code is equivalent to configuring the Block Linearization Specification dialog
box:

satblk = 'configSatBlockFcn/Saturation';

set_param(satblk,'SCDEnableBlockLinearizationSpecification','on');

rep = struct('Specification','mySaturationLinearizationFcn',...

             'Type','Function',...

             'ParameterNames','SaturationLimit',...
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              'ParameterValues','satlimit');

set_param(satblk,'SCDBlockLinearizationSpecification',rep);

6 Define the saturation limit, which is a parameter required by the linearization
function of the Saturation block.

satlimit = 10;

7 Linearize the model again. Now, the linearization uses the custom linearization of
the saturation block.

linsys_cust = linearize(sys,io)

linsys_cust =

 

  d = 

               Constant

   Saturation       0.5

 

Static gain.

At the model operating point, the input to the saturation block is 10. Therefore, the
block linearizes to 0.5, the linearization value specified in the function for saturation
boundary.

Augment the Linearization of a Block

This example shows how to augment the linearization of a block with additional time
delay dynamics, using a block linearization specification function.

1 Open Simulink model.

mdl = 'scdFcnCall';

open_system(mdl)
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This model includes a continuous time plant, Plant, and a discrete-time controller,
Controller. The D/A block discretizes the plant output with a sampling time
of 0.1 s. The External Scheduler block triggers the controller to execute with
the same period, 0.1 s. However, the trigger has an offset of 0.05 s relative to the
discretized plant output. For that reason, the controller does not process a change in
the reference signal until 0.05 s after the change occurs. This offset introduces a time
delay of 0.05 s into the model.

2 (Optional) Linearize the closed-loop model at the model operating point without
specifying a linearization for the Controller block.

io = getlinio(mdl);

sys_nd = linearize(mdl,io);

The getlinio function returns the linearization input and output points that are
already defined in the model.

3 (Optional) Check the linearization result by frequency response estimation.

input = frest.Sinestream(sys_nd);

sysest = frestimate(mdl,io,input);

bode(sys_nd,'g',sysest,'r*',{input.Frequency(1),input.Frequency(end)})

legend('Linearization without delay',...

     'Frequency Response Estimation','Location','SouthWest')
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The exact linearization does not account for the time delay introduced by the
controller execution offset. A discrepancy results between the linearized model and
the estimated model, especially at higher frequencies.

4 Write a function to specify the linearization of the Controller block that includes
the time delay.

The following configuration function defines a linear system that equals the default
block linearization multiplied by a time delay. Save this configuration function to a
location on your MATLAB path. (For this example, the function is already saved as
scdAddDelayFcn.m.)

function sys = scdAddDelayFcn(BlockData)

sys = BlockData.BlockLinearization*thiran(0.05,0.1);
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The input to the function, BlockData, is a structure that the software creates
automatically each time it linearizes the block. When you specify a block
linearization configuration function, the software automatically passes BlockData
to the function. The field BlockData.BlockLinearization contains the current
linearization of the block.

This configuration function approximates the time delay as a thiran filter. The
filter indicates a discrete-time approximation of the fractional time delay of 0.5
sampling periods. (The 0.05 s delay has a sampling time of 0.1 s).

5 Specify the configuration function scdAddDelayFcn as the linearization for the
Controller block.

a Right-click the Controller block, and select Linear Analysis  > Specify
Selected Block Linearization.

b Select the Specify block linearization using one of the following check
box. Then, select Configuration Function from the drop-down list.

c Enter the function name scdAddDelayFcn in the text box. scdAddDelayFcn
has no parameters, so leave the parameter table blank.

d Click OK.
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6 Linearize the model using the specified block linearization.

sys_d = linearize(mdl,io);

The linear model sys_d is a linearization of the closed-loop model that accounts for
the time delay.

7 (Optional) Compare the linearization that includes the delay with the estimated
frequency response.

bode(sys_d,'b',sys_nd,'g',sysest,'r*',...

     {input.Frequency(1),input.Frequency(end)})

legend('Linearization with delay','Linearization without delay',...

     'Frequency Response Estimation','Location','SouthWest')
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The linear model obtained with the specified block linearization now accounts for the
time delay. This linear model is therefore a much better match to the real frequency
response of the Simulink model.

Models with Time Delays

• “Choosing Approximate Versus Exact Time Delays” on page 2-130
• “Specifying Exact Representation of Time Delays” on page 2-131

Choosing Approximate Versus Exact Time Delays

Simulink Control Design lets you choose whether to linearize models using exact
representation or Pade approximation of continuous time delays. How you treat time
delays during linearization depends on your nonlinear model.

Simulink blocks that model time delays are:

• Transport Delay block
• Variable Time Delay block
• Variable Transport Delay block
• Delay block
• Unit Delay block

By default, linearization uses Pade approximation for representing time delays in your
linear model.

Use Pade approximation to represent time delays when:

• Applying more advanced control design techniques to your linear plant, such as LQR
or H-infinity control design.

• Minimizing the time to compute a linear model.

Specify to linearize with exact time delays for:

• Minimizing errors that result from approximating time delays
• PID tuning or loop-shaping control design methods in Simulink Control Design
• Discrete-time models (to avoid introducing additional states to the model)

The software treats discrete-time delays as internal delays in the linearized model.
Such delays do not appear as additional states in the linearized model.
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Specifying Exact Representation of Time Delays

Before linearizing your model:

• In the Linear Analysis Tool:

1 In the Exact Linearization tab, click Options  .

This action opens the Options for exact linearization dialog box.
2 In the Linearization tab, select the Return linear model with exact delay(s)

check box.
• At the command line:

Use linearizeOptions to specify the UseExactDelayModel option.

Related Examples

Linearizing Models with Delays

More About

• “Models with Time Delays” in the Control System Toolbox documentation
• “Time-Delay Approximation” in the Control System Toolbox documentation

Perturbation Level of Blocks Perturbed During Linearization

Blocks that do not have preprogrammed analytic Jacobians linearize using numerical
perturbation.

• “Change Block Perturbation Level” on page 2-131
• “Perturbation Levels of Integer Valued Blocks” on page 2-132

Change Block Perturbation Level

This example shows how to change the perturbation level to the Magnetic Ball Plant
block in the magball model. Changing the perturbations level changes the linearization
results.
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The default perturbation size is 10-5(1+|x|), where x is the operating point value of the
perturbed state or the input.

Open the model before changing the perturbation level.

To change the perturbation level of the states to 10 1
7-

+( )x , where x is the state value,
type:

blockname='magball/Magnetic Ball Plant'

set_param(blockname,'StatePerturbationForJacobian','1e-7')

To change the perturbation level of the input to 10 1
7-

+( )x , where x is the input signal
value:

1 Open the system and get the block port handles.

sys = 'magball';

open_system(sys);

blockname = 'magball/Magnetic Ball Plant';

ph = get_param(blockname,'PortHandles')

2 Get the handle to the inport value.

p_in = ph.Inport(1)

3 Set the inport perturbation level.

set_param(p_in,'PerturbationForJacobian','1e-7')

Perturbation Levels of Integer Valued Blocks

A custom block that requires integer input ports for indexing might have linearization
issues when this block:

• Does not support small perturbations in the input value
• Accepts double-precision inputs

To fix the problem, try setting the perturbation level of such a block to zero (which sets
the block linearization to a gain of 1).

Linearizing Blocks with Nondouble Precision Data Type Signals

You can linearize blocks that have nondouble precision data type signals as either
inputs or outputs, and have no preprogrammed exact linearization. Without additional
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configuration, such blocks automatically linearize to zero. For example, logical operator
blocks have Boolean outputs and linearize to 0.

Linearizing blocks that have nondouble precision data type signals requires converting
all signals to double precision. This approach only works when your model can run
correctly in full double precision.

When you have only a few blocks impacted by the nondouble precision data types, use a
Data Type Conversion block to fix this issue.

When you have many nondouble precision signals, you can override all data types with
double precision using the Fixed Point Tool.

• “Overriding Data Types Using Data Type Conversion Block” on page 2-133
• “Overriding Data Types Using Fixed Point Tool” on page 2-134

Overriding Data Types Using Data Type Conversion Block

Convert individual signals to double precision before linearizing the model by inserting
a Data Type Conversion block. This approach works well for model that have only a few
affected blocks.

After linearizing the model, remove the Data Type Conversion block from your model.

Note: Overriding nondouble data types is not appropriate when the model relies on these
data types, such as relying on integer data types to perform truncation from floats.

For example, consider the model configured to linearize the Square block at an operating
point where the input is 1. The resulting linearized model should be 2, but the input
to the Square block is Boolean. This signal of nondouble precision date type results in
linearization of zero.

In this case, inserting a Data Type Conversion block converts the input signal to the
Square block to double precision.
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Overriding Data Types Using Fixed Point Tool

When you linearize a model that contains nondouble data types but still runs correctly in
full double precision, you can override all data types with doubles using the Fixed Point
Tool. Use this approach when you have many nondouble precision signals.

After linearizing the model, restore your original settings.

Note: Overriding nondouble data types is not appropriate when the model relies on these
data types, such as relying on integer data types to perform truncation from floats.

1 In the Simulink model, select Analysis > Fixed Point Tool.

The Fixed Point Tool opens.
2 In the Data type override menu, select Double.

This setting uses double precision values for all signals during linearization.
3 Restore settings when linearization completes.

Event-Based Subsystems (Externally Scheduled Subsystems)

• “Linearizing Event-Based Subsystems” on page 2-134
• “Approaches for Linearizing Event-Based Subsystems” on page 2-135
• “Periodic Function Call Subsystems for Modeling Event-Based Subsystems” on page

2-135
• “Approximating Event-Based Subsystems Using Curve Fitting (Lump-Average

Model)” on page 2-139

Linearizing Event-Based Subsystems

Event-based subsystems (triggered subsystems) and other event-based models require
special handling during linearization.



 More About

2-135

Executing a triggered subsystem depends on previous signal events, such as zero
crossings. However, because linearization occurs at a specific moment in time, the trigger
event never happens.

An example of an event-based subsystem is an internal combustion (IC) engine. When
an engine piston approaches the top of a compression stroke, a spark causes combustion.
The timing of the spark for combustion is dependent on the speed and the position of the
engine crankshaft.

In the scdspeed model, triggered subsystems generate events when the pistons reach
both the top and bottom of the compression stroke. Linearization in the presence of such
triggered subsystems is not meaningful.

Approaches for Linearizing Event-Based Subsystems

You can obtain a meaningful linearization of triggered subsystems, while still preserving
the simulation behavior, by recasting the event-based dynamics as one of the following:

• Lumped average model that approximates the event-based behavior over time.
• Periodic function call subsystem, with Normal simulation mode.

In the case of periodical function call subsystems, the subsystem linearizes to the
sampling at which the subsystem is periodically executed.

In many control applications, the controller is implemented as a discrete controller,
but the execution of the controller is driven by an external scheduler. You can use
such linearized plant models when the controller subsystem is marked as a Periodic
Function call subsystem.

If recasting event-based dynamics does not produce good linearization results, try
frequency response estimation. See “Estimate Frequency Response Using Linear
Analysis Tool”.

Periodic Function Call Subsystems for Modeling Event-Based Subsystems

This example shows how to use periodic function call subsystems to approximate event-
based dynamics for linearization.

1 Open Simulink model.

sys = 'scdPeriodicFcnCall';
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open_system(sys)

2 Linearize model at the model operating point.

io = getlinio(sys);

linsys = linearize(sys,io)

The linearization is zero because the subsystem is not a periodic function call.

d = 

                 Desired  Wat

   Water-Tank S             0

 Static gain.

Now, specify the Externally Scheduled Controller block as a Periodic Function Call
Subsystem.

3 Double-click the Externally Scheduled Controller (Function-Call Subsystem) block.

Double-click the function block to open the Block Parameters dialog box.
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4 Set Sample time type to be periodic.

Leave the Sample time value as 0.01, which represents the sample time of the
function call.

5 Linearize the model.

linsys2 = linearize(sys,io)

 

a = 

                        H  Integrator

   H               0.9956    0.002499

   Integrator  -0.0007774           1

 

b = 
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               Desired  Wat

   H               0.003886

   Integrator     0.0007774

 

c = 

                          H  Integrator

   Water-Tank S           1           0

 

d = 

                 Desired  Wat

   Water-Tank S             0

 

Sampling time: 0.01

Discrete-time model.

6 Plot step response.

step(linsys2)

7 Close the model.

bdclose(sys);
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Approximating Event-Based Subsystems Using Curve Fitting (Lump-Average Model)

This example shows how to use curve fitting to approximate event-based dynamics of an
engine.

The scdspeed model linearizes to zero because scdspeed/Throttle & Manifold/
Intake Manifold is an event-triggered subsystem.

You can approximate the event-based dynamics of the scdspeed/Throttle &
Manifold/Intake Manifold subsystem by adding the Convert to mass charge block
inside the subsystem.

The Convert to mass charge block approximates the relationship between Air Charge,
Manifold Pressure, and Engine Speed as a quadratic polynomial.

Air Charge p Engine Speed p Manifold Pressure p      = ¥ + ¥ + ¥1 2 3 (MManifold Pressure

p Manifold Pressure Engine Speed

)
2

4
+ ¥ ¥ +   pp

5
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If measured data for internal signals is not available, use simulation data from the
original model to compute the unknown parameters p1, p2, p3, p4, and p5 using a least
squares fitting technique.

When you have measured data for internal signals, you can use the Simulink Design
Optimization™ software to compute the unknown parameters. See Engine Speed Model
Parameter Estimation to learn more about computing model parameters, linearizing this
approximated model, and designing a feedback controlled for the linear model.

The next figure compares the simulations of the original event-based model and the
approximated model. Each of the pulses corresponds to a step change in the engine
speed. The size of the step change is between 1500 and 5500. Thus, you can use the
approximated model to accurately simulate and linearize the engine between 1500 RPM
and 5500 RPM.
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Models with Pulse Width Modulation (PWM) Signals

This example shows how to configure models that use Pulse Width Modulation (PWM)
input signals for linearization. For linearization, specify a custom linearization of the
subsystem that takes the DC signal to be a gain of 1.

Many industrial applications use Pulse Width Modulation (PWM) signals because such
signals are robust in the presence of noise.

The next figure shows two PWM signals. In the top plot, a PWM signal with a 20% duty
cycle represents a 0.2 V DC signal. A 20% duty cycle corresponding to 1 V signal for 20%
of the cycle, followed by a value of 0 V signal for 80% of the cycle. The average signal
value is 0.2 V.

In the bottom plot, a PWM signal with an 80% duty cycle represent a 0.8 V DC signal.

For example, in the scdpwm model, a PWM signal is converted to a constant signal.
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When linearizing a model containing PWM signals there are two effects of linearization
you should consider:

• The signal level at the operating point is one of the discrete values within the PWM
signal, not the DC signal value. For example, in the model above, the signal level is
either 0 or 1, not 0.8. This change in operating point affects the linearized model.

• The creation of the PWM signal within the subsystem Voltage to PWM, shown
in the next figure, uses the Compare to Zero block. Such comparator blocks do not
linearize well due to their discontinuities and the nondouble outputs.

Related Examples

Specifying Custom Linearizations for Simulink Blocks
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Specifying Linearization for Model Components Using System
Identification

This example shows how to use System Identification Toolbox to identify a linear system
for a model component that does not linearize well and use the identified system to
specify its linearization. Note that running this example requires SimPowerSystems in
addition to System Identification Toolbox.

Linearizing Hard Drive Model

Open the simulink model for the hard drive.

model = 'scdpwmharddrive';

open_system(model);

In this model, the hard drive plant is driven by a current source. The current source is
implemented by a circuit that is driven by a Pulse Width Modulation (PWM) signal so
that its output can be adjusted by the duty cycle. For details of the hard drive model, see
the example “"Digital Servo Control of a Hard-Disk Drive"” in Control System Toolbox™
examples.

PWM-driven circuits usually have high frequency switching components, such as the
MOSFET transistor in this model, whose average behavior is not well defined. Thus,
exact linearization of this type of circuits is problematic. When you linearize the model
from duty cycle input to the position error, the result is zero.

io(1) = linio('scdpwmharddrive/Duty cycle',1,'input');

io(2) = linio('scdpwmharddrive/Hard Disk Model',1,'output');
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sys = linearize(model,io)

sys =

 

  d = 

                 Duty cycle

   position err           0

 

Static gain.

Finding a Linear Model for PWM Component

You can use frequency response estimation to obtain the frequency response of the PWM-
driven current source and use the result to identify a linear model for it. The current
signal has a discrete sample time of 1e-7. Thus, you need to use a fixed sample time
sinestream signal. Create a signal that has frequencies between 2K and 200K rad/s.

idinput = frest.createFixedTsSinestream(Ts,{2000,200000});

idinput.Amplitude = 0.1;

You can then define the input and output points for PWM-driven circuit and run the
frequency response estimation with the sinestream signal.

pwm_io(1) = linio('scdpwmharddrive/Duty cycle',1,'input');

pwm_io(2) = linio('scdpwmharddrive/PWM driven converter',1,'openoutput');

sysfrd = frestimate(model,pwm_io,idinput);

Using the N4SID command from System Identification Toolbox, you can identify a
second-order model using the frequency response data. Then, compare the identified
model to the original frequency response data.

sysid = ss(tfest(idfrd(sysfrd),2));

bode(sysid,sysfrd,'r*');
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We used frequency response data with frequencies between 2K and 200K rad/s. The
identified model has a flat magnitude response for frequencies smaller than 2K.
However, our estimation did not have include for those frequencies. Assume that you
would like to make sure the response is flat by checking the frequency response for 20
and 200 rad/s. To do so, create another input signal with those frequencies in it.

lowfreq = [20 200];

inputlow = frest.createFixedTsSinestream(Ts,lowfreq)

 

The sinestream input signal:

 

      Frequency           : [20 200] (rad/s)

      Amplitude           : 1e-05
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      SamplesPerPeriod    : [3141593 314159]

      NumPeriods          : 4

      RampPeriods         : 0

      FreqUnits (rad/s,Hz): rad/s

      SettlingPeriods     : 1

      ApplyFilteringInFRESTIMATE (on/off)    : on

      SimulationOrder (Sequential/OneAtATime): Sequential

 

In the input signal parameters, we can see that having a very fast sample rate of 1e-7
seconds (10 MHz sampling frequency) for the frequencies 20 and 200 rad/s cause high
SamplesPerPeriod values of 3141593 and 314159. Considering that each frequency has
4 periods, frequency response estimation would log output data with around 14 millions
samples. This would require a lot of memory and it is quite likely that you might run into
memory issues running the estimation.

Obviously, you do not need such a high sampling rate for analyzing 20 and 200 rad/s
frequencies. You can use a smaller sampling rate to avoid memory issues:

Tslow = 1e-4;

wslow = 2*pi/Tslow;

inputlow = frest.createFixedTsSinestream(Tslow,wslow./round(wslow./lowfreq));

inputlow.Amplitude = 0.1;

To make the model compatible with the smaller sampling rate, resample the output data
point using a rate transition block as in the modified model:

modellow = 'scdpwmharddrive_lowfreq';

open_system(modellow);
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You can now run the analysis for the low frequencies and compare it against
identification result.

load scdpwmharddrive_lowfreqresults.mat

% sysfrdlow = frestimate(modellow,getlinio(modellow),inputlow);

bode(sysid,sysfrdlow,'r*');

bdclose(modellow);
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Specifying the Linearization for PWM Component

As you verified using the frequency response estimation, the low-frequency dynamics
of the PWM-driven component are captured well by the identified system. Now you can
make linearization use this system as the linearization of the PWM-driven component.
To do so, specify block linearization of that subsystem as follows:

pwmblock = 'scdpwmharddrive/PWM driven converter';

set_param(pwmblock,'SCDEnableBlockLinearizationSpecification','on');

rep = struct('Specification','sysid',...

             'Type','Expression',...

             'ParameterNames','',...

             'ParameterValues','');

set_param(pwmblock,'SCDBlockLinearizationSpecification',rep);

set_param('scdpwmharddrive/Duty cycle','SampleTime','Ts_plant');
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Linearizing the model after specifying the linearization of the PWM component gives us a
non-zero result:

sys = linearize(model,io);

You might still like to validate this linearization result using frequency response
estimation. Doing this as below verifies that our linearization result is quite accurate and
all the resonances exist in the actual dynamics of the model.

valinput = frest.Sinestream(sys);

valinput = fselect(valinput,3e3,1e5);

valinput.Amplitude = 0.1;

sysval = frestimate(model,io,valinput);

bodemag(sys,sysval,'r*');
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Close the model:

bdclose('scdpwmharddrive');
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Speeding Up Linearization of Complex Models

In this section...

“Factors That Impact Linearization Performance” on page 2-151
“Blocks with Complex Initialization Functions” on page 2-151
“Disabling the Linearization Inspector in the Linear Analysis Tool” on page 2-151
“Batch Linearization of Large Simulink Models” on page 2-152

Factors That Impact Linearization Performance

Large Simulink models and blocks with complex initialization functions can slow
linearization.

In most cases, the time it takes to linearize a model is directly related to the time it takes
to “update the block diagram”.

Blocks with Complex Initialization Functions

Use the MATLAB Profiler to identify complex bottlenecks in block initialization
functions.

In the MATLAB Profiler, run the command:

set_param(modelname,'SimulationCommand','update')

Disabling the Linearization Inspector in the Linear Analysis Tool

You can speed up the linearization of large models by disabling the Linearization
Diagnostics Viewer in the Linear Analysis Tool.

The Linearization Diagnostic Viewer stores and tracks linearization values of individual
blocks, which can impact linearization performance.

In the Linear Analysis Tool, in the Exact Linearization tab, clear the Launch
Diagnostic Viewer check box.

Tip Alternatively, you can disable the Linearization Diagnostic Viewer globally in the
Simulink Control Design tab of the MATLAB preferences dialog box. Clear the Launch
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diagnostic viewer for exact linearizations in the linear analysis tool check box.
This global preference persists from session to session until you change this preference.

Batch Linearization of Large Simulink Models

When batch linearizing a large model that contains only a few varying parameters, you
can use linlftfold to reduce the computational load.

See Computing Multiple Linearizations of Models with Block Variations More Efficiently.
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Exact Linearization Algorithm

In this section...

“Continuous-Time Models” on page 2-153
“Multirate Models” on page 2-154
“Perturbation of Individual Blocks” on page 2-155
“User-Defined Blocks” on page 2-157
“Look Up Tables” on page 2-157

Continuous-Time Models

Simulink Control Design lets you linearize continuous-time nonlinear systems. The
resulting linearized model is in state-space form.

In continuous time, the state space equations of a nonlinear system are:

&x t f x t u t t

y t g x t u t t

( ) ( ), ( ),

( ) ( ), ( ),

= ( )

= ( )

where x(t) are the system states, u(t) are the input signals, and y(t) are the output
signals.

To describe the linearized model, define a new set of variables of the states, inputs, and
outputs centered about the operating point:

d

d

d

x t x t x

u t u t u

y t y t y

( ) ( )

( ) ( )

( ) ( )

= -

= -

= -

0

0

0

The output of the system at the operating point is y(t0)=g(x0,u0,t0)=y0.

The linearized state-space equations in terms of δx(t), δu(t), and δy(t) are:

d d d

d d d

&x t A x t B u t

y t C x t D u t

( ) ( ) ( )

( ) ( ) ( )

= +

= +
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where A, B, C, and D are constant coefficient matrices. These matrices are the Jacobians
of the system, evaluated at the operating point:
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C
g

x
D

g

u

t x u t x u

t x u t x u

=
∂

∂
=

∂

∂

=
∂
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=

∂

∂
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This linear time-invariant approximation to the nonlinear system is valid in a region
around the operating point at t=t0, x(t0)=x0, and u(t0)=u0. In other words, if the values
of the system states, x(t), and inputs, u(t), are close enough to the operating point, the
system behaves approximately linearly.

The transfer function of the linearized model is the ratio of the Laplace transform of δy(t)
and the Laplace transform of δu(t):
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( )

( )
=

d

d

Multirate Models

Simulink Control Design lets you linearize multirate nonlinear systems. The resulting
linearized model is in state-space form.

Multirate models include states with different sampling rates. In multirate models, the
state variables change values at different times and with different frequencies. Some of
the variables might change continuously.

The general state-space equations of a nonlinear, multirate system are:

& …x t f x t x k x k u t t

x k f x t x k
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where k1,..., km are integer values and tk
1

,..., tk
m

 are discrete times.

The linearized equations that approximate this nonlinear system as a single-rate discrete
model are:

d d d

d d d

x A x B u

y C x D u

k k k

k k k

+ ª +

ª +

1

The rate of the linearized model is typically the least common multiple of the sample
times, which is usually the slowest sample time.

For more information, see Linearization of Multirate Models .

Perturbation of Individual Blocks

Simulink Control Design linearizes blocks that do not have preprogrammed linearization
using numerical perturbation. The software computes block linearization by numerically
perturbing the states and inputs of the block about the operating point of the block.

The block perturbation algorithm introduces a small perturbation to the nonlinear block
and measures the response to this perturbation. The default difference between the

perturbed value and the operating point value is 10 1
5-

+( )x , where x is the operating
point value. The software uses this perturbation and the resulting response to compute
the linear state-space of this block.

In general, a continuous-time nonlinear Simulink block in state-space form is given by:

&x t f x t u t t

y t g x t u t t

( ) ( ), ( ),

( ) ( ), ( ), .

= ( )

= ( )

In these equations, x(t) represents the states of the block, u(t) represents the inputs of the
block, and y(t) represents the outputs of the block.

A linearized model of this system is valid in a small region around the operating point
t=t0, x(t0)=x0, u(t0)=u0, and y(t0)=g(x0,u0,t0)=y0.

To describe the linearized block, define a new set of variables of the states, inputs, and
outputs centered about the operating point:
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d
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The linearized state-space equations in terms of these new variables are:

d d d

d d d

&x t A x t B u t

y t C x t D u t

( ) ( ) ( )

( ) ( ) ( )

= +

= +

A linear time-invariant approximation to the nonlinear system is valid in a region
around the operating point.

The state-space matrices A, B, C, and D of this linearized model represent the Jacobians
of the block.

To compute the state-space matrices during linearization, the software performs these
operations:

1 Perturbs the states and inputs, one at a time, and measures the response of the
system to this perturbation by computing d &x  and δy.

2 Computes the state-space matrices using the perturbation and the response.
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where

• xp,i is the state vector whose ith component is perturbed from the operating point
value.

• xo is the state vector at the operating point.
• up,i is the input vector whose ith component is perturbed from the operating point

value.
• uo is the input vector at the operating point.
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• &x
xp i,

 is the value of &x  at xp,i, uo.

• &x
up i,

 is the value of &x  at up,i, xo.

• &x
o
 is the value of &x  at the operating point.

• y
xp i,

 is the value of y  at xp,i, uo.

• y
up i,

 is the value of y  at up,i, xo.

• yo is the value of y at the operating point.

User-Defined Blocks

All user defined blocks such as S-Function and MATLAB Function blocks, are compatible
with linearization. These blocks are linearized using numerical perturbation.

User-defined blocks do not linearize when these blocks use nondouble precision data
types.

See “Linearizing Blocks with Nondouble Precision Data Type Signals” on page 2-132.

Look Up Tables

Regular look up tables are numerically perturbed. Pre-lookup tables have a
preprogrammed (exact) block-by-block linearization.
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How the Software Treats Loop Openings

To obtain an open-loop transfer function from a model, you specify a loop opening. Loop
openings affect only how the software recombines linearized blocks, not how the software
linearizes each block. In other words, the software ignores openings when determining
the input signal levels into each block, which influences how nonlinear blocks are
linearized. Consider the following model, where you obtain the transfer function from e2
to y2, with the outer-loop open at y1:

+

-
    k2

e2 u2 y2

g2 g1
+

-
e1r

    k1
y1

Here, k1, k2, g1, and g2 are nonlinear.

The software linearizes each block at the specified operating point. At this stage, the
software does not break the signal flow at y1. Therefore, the block linearizations include
the effects of the inner-loop and outer-loop feedback signals.

+

-
    K2

e2 u2 y2

G2 G1
+

-
e1r

    K1
y1

K1, K2, G1, and G2 are the linearized blocks.

Finally, to compute the transfer function, the software enforces the loop opening at y1,
injects an input signal at e2, and measures the output at y2.
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+

-
    K2

e2 u2

G2 G1
+

-
e1r

    K1
y1

de2

+

    y2

The software returns (I+G2K2)-1G2K2 as the transfer function.

See Also
addOpening | getCompSensitivity | getIOTransfer | getLoopTransfer |
getSensitivity | linearize

More About
• “Opening Feedback Loops” on page 2-13
• “Ways to Specify Portion of Model to Linearize” on page 2-15
• “Exact Linearization Algorithm” on page 2-153
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What Is Batch Linearization?

Batch linearization refers to extracting multiple linearizations from a model for various
combinations of I/Os, operating points, and parameter values. You can analyze the time-
domain, frequency-domain, and stability characteristics of the linear models obtained
by batch linearization. For information regarding the tools that you can use for such
analysis, see “Linear Analysis” in the Control System Toolbox documentation.

Consider the magnetic ball levitation model, magball (for model details, see “magball
Simulink Model”):

You can batch linearize this model by varying any combination of the following:

• I/O sets — Linearize a model using different I/Os to obtain any closed-loop or open-
loop transfer function.

For the magball model, some of the transfer functions that you can extract include:

• Magnetic ball plant model, controller model
• Closed-loop transfer function, from the Reference Signal to the plant output, h
• Open-loop transfer function for the controller and magnetic ball plant combined,

that is, the transfer function from the Error Signal to h
• Output disturbance rejection model or sensitivity transfer function, obtained at the

outport of Magnetic Ball Plant block
• Operating points — Because operating points can influence model dynamics, you

linearize a model at different operating points and study their effects on the model.
Consider a simple unforced hanging pendulum with angular position and velocity
as states. This model has two steady-state points, one when the pendulum hangs
downward, which is stable, and another when the pendulum points upward, which is
unstable. Linearizing this model close to the stable operating point produces a stable
model, whereas linearizing this model close to the unstable operating point produces
an unstable model.
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For the magball model, which uses the ball height as a state, you can obtain multiple
linearizations for varying initial ball heights.

• Parameters — Parameters configure a Simulink model in a variety of ways. For
example, you can use parameters to specify various coefficients or controller sample
times. You can also use a discrete parameter, like the control input to a Multiport
Switch block, to control the data path within a model. Therefore, varying a parameter
can serve a range of purposes, depending on how the parameter contributes to the
model.

For the magball model, you can vary the parameters of the PID Controller block,
Controller/PID Controller. The linearizations obtained by varying these
parameters show how the controller impacts the model. Alternatively, you can vary
the magnetic ball plant parameter values to determine the controller robustness
to variations in the plant model. You can also vary the parameters of the input
block, Desired Height, and study the effects of varying input levels on the model
response.

Related Examples
• “Batch Linearize Model for Parameter Value Variations Using linearize” on page

2-166
• “Batch Linearize Model at Multiple Operating Points Using linearize” on page

2-168
• “Vary Operating Points and Obtain Multiple Transfer Functions Using

slLinearizer” on page 2-178
• “Vary Parameter Values and Obtain Multiple Transfer Functions Using

slLinearizer” on page 2-170

More About
• “Choosing Batch Linearization Tools” on page 2-162
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Choosing Batch Linearization Tools

You can perform batch linearization at the command line, using either the linearize
function or the slLinearizer interface. Use the following table to choose a batch
linearization tool.

Reasons to Use linearize Reasons to Use slLinearizer Interface

• You are a new user or have experience
in using the Linear Analysis Tool. The
workflow for using linearize closely
mirrors the workflow for linearizing
models using the Linear Analysis
Tool. When you generate MATLAB
code from the Linear Analysis Tool
to programmatically reproduce your
session, this code uses linearize. You
can easily modify this code to batch
linearize a model.

• You are extracting linearizations
for only one I/O set (single transfer
function).

• You want to obtain multiple open-
loop and closed-loop transfer functions
without modifying the model or creating
a linearization I/O set (using linio) for
each transfer function.

• You want to obtain multiple open-
loop and closed-loop transfer functions
without recompiling the model for each
transfer function. You can also use
linearize to obtain multiple open-
loop and closed-loop transfer functions.
To do so, you call linearize multiple
times, specifying a different I/O set
for each call. However, the software
recompiles the model each time you call
linearize.

Related Examples
• “Batch Linearize Model for Parameter Value Variations Using linearize” on page

2-166
• “Batch Linearize Model at Multiple Operating Points Using linearize” on page

2-168
• “Vary Parameter Values and Obtain Multiple Transfer Functions Using

slLinearizer” on page 2-170
• “Vary Operating Points and Obtain Multiple Transfer Functions Using

slLinearizer” on page 2-178

More About
• “What Is Batch Linearization?” on page 2-160
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• “Batch Linearization Efficiency When You Vary Parameter Values”
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Batch Linearization Efficiency When You Vary Parameter Values

You can use the slLinearizer interface and the linearize command to batch
linearize a model by varying model parameter values. When you vary the value of
tunable parameters, both tools are efficient. Their efficiency results from using a single
model compilation to compute linearizations for all parameter grid points. Tunable
parameters refers to parameters whose values you can change during model simulation
without recompiling the model. Common tunable parameters include the Gain parameter
of the Gain block and Numerator and Denominator coefficients of the Transfer Fcn block.

In contrast, when you vary the value of nontunable parameters, both tools compile
the model for each parameter grid point. This repeated compilation makes batch
linearization slower. To take advantage of the efficiency of single model compilation,
convert your nontunable parameters to tunable parameters. For example, suppose your
model uses the Inline parameters option (see “Inline parameters”) to optimize the
generated code’s memory and processing requirements. Before batch linearizing the
model, clear this check box to make your model parameters tunable. Some parameters,
such as block sample times, cannot be made tunable.

Tip Suppose you are performing batch linearization by varying the values of
tunable parameters and notice that the software is recompiling the model more
than necessary. Check if you have specified linearization options and have set
the AreParamsTunable option to false. Setting this option to false can cause
unnecessary model recompilations. You specify linearization options using an object
created by linearizeOptions.

See Also
linearize | slLinearizer

Related Examples
• “Batch Linearize Model for Parameter Value Variations Using linearize”
• “Vary Parameter Values and Obtain Multiple Transfer Functions Using

slLinearizer”
• “Specify Parameter Samples”
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More About
• “How Parameters Determine Block Behavior”
• “Model Parameters”
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Batch Linearize Model for Parameter Value Variations Using
linearize

This example shows how to use the linearize command to extract multiple
linearizations from a model for varying parameter values (batch linearization).

In this example, you vary the plant parameters and obtain the closed-loop transfer
function from the reference input to the plant output for the watertank model. You
can analyze the batch linearization results, for example, to determine the controller
robustness to variations in the plant model.

Open the model.

open_system('watertank');

Specify the reference input and plant output as the linearization I/Os.

io(1) = linio('watertank/Desired  Water Level',1,'input');

io(2) = linio('watertank/Water-Tank System',1,'output');

io(1), the signal originating at the outport of the Desired Water Level block, is the
reference input. io(2), the signal originating at the outport of the Water-Tank System
block, is the plant output.

Vary the plant parameters A and b, used in the Water-Tank System block, in the
10% range. linearize requires a structure with fields Name and Value to specify the
parameters being varied.

[A_grid,b_grid] = ndgrid(linspace(0.9*A,1.1*A,3),...

                           linspace(0.9*b,1.1*b,4));

params(1).Name = 'A';

params(1).Value = A_grid;

params(2).Name = 'b';

params(2).Value = b_grid;
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params specifies a 3 x 4 parameter grid, where each grid point corresponds to a unique
combination of A and b values.

Obtain the closed-loop transfer function from the reference input to the plant output for
the specified range of plant parameter values.

T = linearize('watertank',io,params);

T is a 3 x 4 array of linearized models. Each entry in the array contains a linearization
for the corresponding parameter combination in the grid specified by params. For
example, T(:,:,2,2) corresponds to the linearization obtained by setting the values of
the A and b parameters to A_grid(2,2) and b_grid(2,2).

See Also
linearize | linio | ndgrid

Related Examples
• “Specify Parameter Samples” on page 2-191
• “Use Response Plots to Analyze Batch Linearization Results” on page 2-184
• “Batch Linearize Model at Multiple Operating Points Using linearize”

More About
• “watertank Simulink Model”
• “Batch Linearization Efficiency When You Vary Parameter Values”
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Batch Linearize Model at Multiple Operating Points Using linearize

This example shows how to use the linearize command to batch linearize a model at
varying operating points.

Obtain the plant transfer function, modeled by the Water-Tank System block, for the
watertank model. You can analyze the batch linearization results to study the operating
point effects on the model behavior.

Open the model.

open_system('watertank');

Specify the linearization I/Os.

ios(1)=linio('watertank/PID Controller',1,'input');

ios(2)=linio('watertank/Water-Tank System',1,'openoutput');

ios(2) specifies an open-loop output point; the loop opening eliminates the effects of
feedback.

You can linearize the model using trimmed operating points, the model initial condition,
or simulation snapshot times. For this example, linearize the model at specified
simulation snapshot times.

ops_tsnapshot = [1,20];

Obtain the transfer function for the Water-Tank System block, linearizing the model at
the specified operating points.

T = linearize('watertank',ios,ops_tsnapshot);
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T is a 2 x 1 array of linearized continuous-time state-space models. The software
computes the T(:,:,1) model by linearizing watertank at ops_tsnapshot(1), and
T(:,:,2) by linearizing watertank at ops_tsnapshot(2).

See Also
findop | linearize | linio

Related Examples
• “Batch Compute Steady-State Operating Points”
• “Batch Linearize Model for Parameter Value Variations Using linearize”
• “Use Response Plots to Analyze Batch Linearization Results” on page 2-184

More About
• “watertank Simulink Model”
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Vary Parameter Values and Obtain Multiple Transfer Functions
Using slLinearizer

This example shows how to use the slLinearizer interface to batch linearize a
Simulink model. You vary model parameter values and obtain multiple open-loop and
closed-loop transfer functions from the model.

You can perform the same analysis using the linearize command. However, when
you want to obtain multiple open-loop and closed-loop transfer functions, especially for
models that are expensive to compile repeatedly, slLinearizer can be more efficient.

Cascaded loop model

The scdcascade model contains a pair of cascaded feedback control loops. Each loop
includes a PI controller. The plant models, G1 (outer loop) and G2 (inner loop), are LTI
models.

Use the slLinearizer interface to analyze the inner- and outer-loop dynamics.

mdl = 'scdcascade';

open_system(mdl);

Create an slLinearizer interface for scdcascade.

sllin = slLinearizer(mdl)
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slLinearizer linearization interface for "scdcascade":

No analysis points. Use addPoint method to add new points.

No permanent openings. Use addOpening method to add new permanent openings.

Other properties (with dot notation get/set access):

      Parameters         : [] 

      OperatingPoints    : [] (model initial condition will be used.)

      BlockSubstitutions : []

      Options            : [1x1 linearize.LinearizeOptions]

Vary the inner-loop controller gains.

For inner-loop analysis, vary the gains of the inner-loop PI controller block, C2. Vary the
proportional gain (Kp2) and integral gain (Ki2) in the 15% range.

Kp2_range = linspace(Kp2*0.85,Kp2*1.15,6);

Ki2_range = linspace(Ki2*0.85,Ki2*1.15,4);

[Kp2_grid, Ki2_grid] = ndgrid(Kp2_range,Ki2_range);

params(1).Name = 'Kp2';

params(1).Value = Kp2_grid;

params(2).Name = 'Ki2';

params(2).Value = Ki2_grid;

sllin.Parameters = params;

Kp2_range and Ki2_range specify the sample values for Kp2 and Ki2. To obtain a
transfer function for each combination of Kp2 and Ki2, use ndgrid and create a 6 x 4
parameter grid with grid arrays Kp2_grid and Ki2_grid. Configure the Parameters
property of sllin with the structure params. This structure specifies the parameters to
be varied and their grid arrays.

Analyze the overall closed-loop transfer function for the inner-loop.

The overall closed-loop transfer function for the inner loop is equal to the transfer
function from u1 to y2. To eliminate the effects of the outer loop, you can break the loop
at e1, y1m, or y1. For this example, break the loop at e1.

Add u1 and y2 as analysis points, and e1 as a permanent opening of sllin.

addPoint(sllin,{'y2','u1'});

addOpening(sllin,'e1');

Obtain the transfer function from u1 to y2.
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r2yi = getIOTransfer(sllin,'u1','y2');

r2yi, a 6 x 4 state-space model array, contains the transfer function for each specified
parameter combination. The software uses the model initial conditions as the
linearization operating point.

Because e1 is a permanent opening of sllin, r2yi does not include the effects of the
outer loop.

Plot the step response for r2yi.

stepplot(r2yi);

The step response for all models varies in the 10% range and the settling time is less
than 1.5 seconds.

Analyze the inner-loop transfer function at the plant output.

Obtain the inner-loop transfer function at y2, with the outer loop open at e1.
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Li = getLoopTransfer(sllin,'y2',-1);

Because the software assumes positive feedback by default and scdcascade uses
negative feedback, specify the feedback sign using the third input argument. Now, Li =
–G2C2.

Plot the bode response for Li.

bodeplot(Li);

The magnitude plot for all the models varies in the 3 dB range. The phase plot shows the
most variation, approximately 20°, in the [1 10] rad/s interval.

Vary the outer-loop controller gains.

For outer-loop analysis, vary the gains of the outer-loop PI controller block, C1. Vary the
proportional gain (Kp1) and integral gain (Ki1) in the 20% range.

Kp1_range = linspace(Kp1*0.8,Kp1*1.2,6);
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Ki1_range = linspace(Ki1*0.8,Ki1*1.2,4);

[Kp1_grid, Ki1_grid] = ndgrid(Kp1_range,Ki1_range);

params(1).Name = 'Kp1';

params(1).Value = Kp1_grid;

params(2).Name = 'Ki1';

params(2).Value = Ki1_grid;

sllin.Parameters = params;

Similar to the workflow for configuring the parameter grid for inner-loop analysis,
create the structure, params, that specifies a 6 x 4 parameter grid. Reconfigure
sllin.Parameters to use the new parameter grid. sllin now uses the default values
for Kp2 and Ki2.

Analyze the closed-loop transfer function from the reference to the plant output.

Remove e1 from the list of permanent openings for sllin before proceeding with outer-
loop analysis.

removeOpening(sllin,'e1');

To obtain the closed-loop transfer function from the reference signal, r, to the plant
output, y1m, add r and y1m as analysis points to sllin.

addPoint(sllin,{'r','y1m'});

Obtain the transfer function from r to y1m.

r2yo = getIOTransfer(sllin,'r','y1m');

Plot the step response for r2yo.

stepplot(r2yo);
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The step response is underdamped for all the models.

Analyze the outer-loop sensitivity at the plant output.

To obtain the outer-loop sensitivity at the plant output, add y1 as an analysis point to
sllin.

addPoint(sllin,'y1');

Obtain the outer-loop sensitivity at y1.

So = getSensitivity(sllin,'y1');

Plot the step response of So.

stepplot(So);
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The plot indicates that it takes approximately 15 seconds to reject a step disturbance at
the plant output, y1.

Close the model.

bdclose(mdl);

See Also
addOpening | addPoint | getCompSensitivity | getIOTransfer |
getLoopTransfer | getSensitivity | linearize | slLinearizer

Related Examples
• “Specify Parameter Samples”
• “Use Response Plots to Analyze Batch Linearization Results” on page 2-184
• “Vary Operating Points and Obtain Multiple Transfer Functions Using

slLinearizer”
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More About
• “Batch Linearization Efficiency When You Vary Parameter Values”



2 Linearization

2-178

Vary Operating Points and Obtain Multiple Transfer Functions
Using slLinearizer

This example shows how to use the slLinearizer interface to batch linearize a
Simulink model. You linearize a model at multiple operating points and obtain multiple
open-loop and closed-loop transfer functions from the model.

You can perform the same analysis using the linearize command. However, when
you want to obtain multiple open-loop and closed-loop transfer functions, especially for
models that are expensive to compile repeatedly, slLinearizer can be more efficient.

Open the model.

mdl = 'watertank';

open_system(mdl);

Create an slLinearizer interface for the watertank model.

sllin = slLinearizer(mdl)

slLinearizer linearization interface for "watertank":

No analysis points. Use addPoint to add new points.

No permanent openings. Use addOpening to add new permanent openings.

Properties with dot notation get/set access:

      Parameters         : [] 

      OperatingPoints    : [] (model initial condition will be used.)

      BlockSubstitutions : []

      Options            : [1x1 linearize.LinearizeOptions]

Specify multiple operating points for linearization.

You can linearize the model using trimmed operating points, the model initial condition,
or simulation snapshot times. For this example, use trim points that you obtain for
varying water-level reference heights.
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opspec = operspec(mdl);

opspec.States(2).Known = 1;

h = [10 15 20];

for ct = 1:numel(h)

    opspec.States(2).x = h(ct);

    Href = h(ct);

    ops(ct) = findop(mdl,opspec);

end

sllin.OperatingPoints = ops;

Here, h specifies the different water-levels. ops is a 1 x 3 array of operating point
objects. Each entry of ops is the model operating point at the corresponding water
level. Configure the OperatingPoints property of sllin with ops. Now, when you
obtain transfer functions from sllin using the getIOTransfer, getLoopTransfer,
getSensitivity, and getCompSensitivity  functions, the software returns a
linearization for each specified operating point.

Each trim point is only valid for the corresponding reference height, represented by
the Href parameter of the Desired Water Level block. So, configure sllin to vary this
parameter accordingly.

param.Name = 'Href';

param.Value = h;

sllin.Parameters = param;

Analyze the plant transfer function.

In the watertank model, the Water-Tank System block represents the plant. To obtain
the plant transfer function, add the input and output signals of the Water-Tank System
block as analysis points of sllin.

addPoint(sllin,{'watertank/PID Controller','watertank/Water-Tank System'})

sllin

slLinearizer linearization interface for "watertank":

2 Analysis points: 

--------------------------

Point 1:
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- Block: watertank/PID Controller

- Port: 1

Point 2:

- Block: watertank/Water-Tank System

- Port: 1

No permanent openings. Use addOpening to add new permanent openings.

Properties with dot notation get/set access:

      Parameters         : [1x1 struct], 1 parameters with sampling grid of size 1x3

            "Href", varying between 10 and 20.

      OperatingPoints    : [1x3 opcond.OperatingPoint]

      BlockSubstitutions : []

      Options            : [1x1 linearize.LinearizeOptions]

The first analysis point, which originates at the outport of the PID Controller block, is
the input to the Water-Tank System block. The second analysis point is the output of the
Water-Tank System block.

Obtain the plant transfer function from the input of the Water-Tank System block to the
block output. To eliminate the effects of the feedback loop, specify the block output as a
temporary loop opening.

G = getIOTransfer(sllin,'PID','Tank','Tank');

In the call to getIOTransfer, 'PID', a substring of the block name 'watertank/PID
Controller', specifies the first analysis point as the transfer function input. Similarly,
'Tank', a substring of the block name 'watertank/Water-Tank System', refers to
the second analysis point. This analysis point is specified as the transfer function output
(third input argument) and a temporary loop opening (fourth input argument).

The output, G, is a 1 x 3 array of continuous-time state-space models.

Plot the step response for G.

stepplot(G);
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The step response of the plant models varies significantly.

Analyze the closed-loop transfer function.

The closed-loop transfer function is equal to the transfer function from the reference
input, originating at the Desired Water Level block, to the plant output.

Add the reference input signal as an analysis point of sllin.

addPoint(sllin,'watertank/Desired  Water Level');

Obtain the closed-loop transfer function.

T = getIOTransfer(sllin,'Desired','Tank');

The output, T, is a 1 x 3 array of continuous-time state-space models.

Plot the step response for T.

stepplot(T);
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Although the step response of the plant transfer function varies significantly at the two
simulation snapshot times, the closed-loop transfer is close.

Analyze the sensitivity at the plant output.

S = getSensitivity(sllin,'Tank');

The software injects a disturbance signal and measures the output at the plant output. S
is a 1 x 3 array of continuous-time state-space models.

Plot the step response for S.

stepplot(S);



 Vary Operating Points and Obtain Multiple Transfer Functions Using slLinearizer

2-183

The plot indicates that both models can reject a step disturbance at the plant output
within 40 seconds.

See Also
addOpening | addPoint | getCompSensitivity | getIOTransfer |
getLoopTransfer | getSensitivity | linearize | slLinearizer

Related Examples
• “Batch Compute Steady-State Operating Points”
• “Vary Parameter Values and Obtain Multiple Transfer Functions Using

slLinearizer”
• “Use Response Plots to Analyze Batch Linearization Results” on page 2-184

More About
• “watertank Simulink Model”
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Use Response Plots to Analyze Batch Linearization Results

This example shows how to plot and analyze the step response for batch linearization
results. Batch linearization results refers to the ss model array returned by the
slLinearizer interface or linearize function. This array contains linearizations for
varying parameter values, operating points, or both. You can use the technique in this
example to analyze the frequency response, stability, or sensitivity for batch linearization
results.

Obtain batch linearization results.

Load the batch linearization results saved in scd_batch_lin_results1.mat.

load scd_batch_lin_results1 linsys;

linsys, a 4 x 3 x 2 ss model array, contains the closed-loop transfer function of the
watertank model from the reference input to the plant output. linsys was obtained for
four simulation snapshot times, t = [0 1 2 3], by varying the model parameters, A
and b. The sample values for A are [10 20 30], and the sample values for b are [4 6].

Plot the step response for the linearized models.

stepplot(linsys);
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View the parameter combination and simulation snapshot time that yielded a specific response.

Click the response.
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A data tip appears on the plot, providing information about the selected response and
the related model. The last lines of the data tip show the parameter combination and
simulation snapshot time that yielded this response. In the previous plot, the selected
response corresponds to the model obtained by setting A to 30 and b to 6. The software
linearized the model after simulating the model for two time units.

Plot the step response for a subset of the batch linearization results.

Suppose you want to view the responses for models linearized at a specific simulation
snapshot time, for example two time units. Right-click the plot and select Array
Selector. The Model Selector for LTI Arrays dialog box opens.
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The Selection Criterion Setup panel contains three columns, one for each model array
dimension of linsys. The first column corresponds to the simulation snapshot time. The
third entry of this column corresponds to the simulation snapshot time of two time units.
Select only this entry in the first column.

Click OK. The plot displays the responses for only the models linearized at two time
units.
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Plot the step response for a specific parameter combination and simulation snapshot time.

Suppose you want to view the step response for the model obtained by linearizing
the watertank model at t = 3, for A = 10 and b = 4. To do so, you can use the
SamplingGrid property of the linearized models, which is specified as a structure. When
you perform batch linearization, the software populates the SamplingGrid structure
with information regarding the variable values used to obtain the model. Variable values
includes each parameter that you vary and the simulation snapshot times at which you
linearize the model. For example:

linsys(:,:,1).SamplingGrid

ans = 

       A: 10

       b: 4

    Time: 0

Here linsys(:,:,1) refers to the first model in linsys. This model was obtained at
simulation time t = 0, for A = 10 and b = 4.
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Extract, from linsys, the model obtained by linearizing the watertank model at t =
3, for A = 10 and b = 4:

sg = linsys.SamplingGrid;

sys = linsys(:,:,sg.A == 10 & sg.b == 4 & sg.Time == 3);

The structure, sg, contains the sampling grid for all the models in linsys. The
expression sg.A == 10 & sg.b == 4 & sg.Time == 3 returns a logical array. Each
entry of this array contains the logical evaluation of the expression for corresponding
entries in sg.A, sg.b, and sg.Time. sys, a model array, contains all the linsys models
that satisfy the expression.

View the step response for sys.

stepplot(sys);
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Related Examples
• “Validate Batch Linearization Results” on page 2-196
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Specify Parameter Samples

In this section...

“Single Parameter” on page 2-191
“Multiple Parameters” on page 2-192

Parameters configure a Simulink model in a variety of ways. For example, you can use
parameters to specify various coefficients or controller sample times. You can also use a
discrete parameter, like the control input to a Multiport Switch block, to control the data
path within a model. Varying the value of a parameter helps you understand its impact
on the model behavior.

You can use the slLinearizer interface or linearize command to specify a range
of values for a parameter, also referred to as a parameter grid or parameter samples.
The tools batch linearize the model, computing a linearization for each parameter value
in the parameter grid. You can also vary multiple parameters, thus extending the
parameter grid dimension. Both tools require that you specify the parameter samples
using a structure with fields Name and Value.

Single Parameter

To vary the value of a single parameter, for example a, specify the parameter grid as
follows:

param.Name = 'a';

param.Value = A;

Here, A is an array specifying the sample values for a.

The table lists some common ways of specifying parameter samples.

Parameter Sample-Space Type How to Specify the Parameter Samples

Linearly varying param.Value =

linspace(p_min,p_max,num_samples);

Logarithmically varying param.Value =

logspace(p_min,p_max,num_samples);

Random param.Value =

rand(1,num_samples);

Custom param.Value = custom_vector;
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Multiple Parameters

To vary the value of multiple parameters, specify a structure array with an entry for
each parameter whose value you vary. The structure for each parameter is the same
as described in “Single Parameter” on page 2-191. You can specify the Value field
for a parameter to be an array of any dimension. However, the size of the Value field
must match for all parameters. Corresponding array entries for all the parameters, also
referred to as a parameter grid point, must map to a desired parameter combination.
When the software linearizes the model, it computes a linearization—an ss model—for
each grid point. The software populates the SamplingGrid property of each linearized
model with information about the parameter grid point that the model corresponds to.

Consider this parameter grid:

Here, you vary the values of three parameters, a, b, and c. The samples form a 3 x 4 x 5
grid. The ss model array, sys, is the batch linearization result.
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Specify Full Grid

Suppose your model has two parameters whose values you want to vary, a and b:

a={a ,a }

b={b ,b }

1 2

1 2

You want to linearize the model for every combination of a and b, also referred to as a
full grid:

( , ), ( , ),

( , ), ( , )

a b a b

a b a b

1 1 1 2

2 1 2 2

Ï
Ì
Ó

¸
˝
˛

Use ndgrid to create a rectangular parameter grid.

a1 = 1; a2 = 2;

a = [a1 a2];

b1 = 3; b2 = 4;

b = [b1 b2];

[A,B] = ndgrid(a,b)

>> A

A =

     1     1

     2     2

>> B

B =

     3     4

     3     4

Create the structure array, params, that specifies the parameter grid.

params(1).Name = 'a';

params(1).Value = A;

params(2).Name = 'b';
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params(2).Value = B;

In general, to specify a full grid for N parameters, use ndgrid to obtain N grid arrays.

[P1,...,PN] = ndgrid(p1,...,pN);

Here, p1,...,pN are the parameter sample vectors.

Create a 1 x N structure array.

params(1).Name = 'p1';

params(1).Value = P1;

...

params(N).Name = 'pN';

params(N).Value = PN;

Specify Subset of Full Grid

If your model is complex or you vary the value of many parameters, linearizing the
model for the full grid can become expensive. In this case, you can specify a subset of the
full grid using a table-like approach. Using the example in “Specify Full Grid” on page
2-193, suppose you want to linearize the model for the following combinations of a and
b:

{( , ), ( , )}a b a b1 1 21

Create the structure array, params, that specifies this parameter grid.

A = [a1 a1];

params(1).Name = 'a';

params(1).Value = A;

B = [b1 b2];

params(2).Name = 'b';

params(2).Value = B;

See Also
linearize | linspace | logspace | ndgrid | rand | slLinearizer

Related Examples
• “Batch Linearize Model for Parameter Value Variations Using linearize” on page

2-166
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• “Vary Parameter Values and Obtain Multiple Transfer Functions Using
slLinearizer” on page 2-170

More About
• “Batch Linearization Efficiency When You Vary Parameter Values”
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Validate Batch Linearization Results

When you batch linearize a model, the software returns a model array containing
the linearized models. There are two ways to validate a linearized model (described
below), but both methods have some computational overhead. This overhead can make
validating each model in the batch linearization results infeasible. Therefore, it may
be cost effective to validate either a single model or a subset of the batch linearization
results. You can use linear analysis plots and commands to determine the validation
candidates. For information regarding the tools that you can use for such analysis, see
“Linear Analysis” in the Control System Toolbox documentation.

You can validate a linearization using the following approaches:

• Obtain a frequency response estimation of the nonlinear model, and compare its
response to that of the linearized model. For an example, see “Frequency-Domain
Validation of Linearization” on page 2-95.

• Simulate the nonlinear model and compare its time-domain response to that of the
linearized model. For an example, see “Time-Domain Validation of Linearization” on
page 2-91.

See Also
linearize | slLinearizer

Related Examples
• “Use Response Plots to Analyze Batch Linearization Results” on page 2-184
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Approximating Nonlinear Behavior using an Array of LTI Systems

This example shows how to approximate the nonlinear behavior of a system as an array
of interconnected LTI models.

The example describes linear approximation of pitch axis dynamics of an airframe over a
range of operating conditions. The array of linear systems thus obtained is used to create
a Linear Parameter Varying (LPV) representation of the dynamics. The LPV model
serves as an approximation of the nonlinear pitch dynamics.

About Linear Parameter Varying (LPV) Models

In many situations the nonlinear dynamics of a system need to be approximated using
simpler linear systems. A single linear system provides a reasonable model for behavior
limited to a small neighborhood of an operating point of the nonlinear system. When the
nonlinear behavior needs to be approximated over a range of operating conditions, we
can use an array of linear models that are interconnected by suitable interpolation rules.
Such a model is called an LPV model.

For generating an LPV model, the nonlinear model is trimmed and linearized over a grid
of operating points. For this purpose, the operating space is parameterized by a small
number of parameters called the scheduling parameters. These parameters are often
a subset of the nonlinear system's inputs, states and output variables. An important
consideration in creation of LPV models is the identification of scheduling parameter set
and selection of a range of their values at which the linearizations need to be performed.

We illustrate this approach for approximating the pitch dynamics of an airframe.

Pitch Dynamics of an Airframe

Consider a three-degree-of-freedom model of the pitch axis dynamics of an airframe. The
states are the Earth coordinates , the body coordinates , the pitch angle ,
and the pitch rate . Figure 1 summarizes the relationship between the inertial and
body frames, the flight path angle , the incidence angle , and the pitch angle .
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Figure 1: Airframe dynamics.

The airframe dynamics are nonlinear and the aerodynamic forces and moments depend
on speed  and incidence . The model "scdairframeTRIM" describes the dynamics.

open_system('scdairframeTRIM')
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Batch Linearization Across the Flight Envelope

We use the speed  and the incidence angle  as scheduling parameters. That is, we will
trim the airframe model over a grid of  and  values. Note that these are two of the five
outputs of the scdairframeTRIM model.

Assume that the incidence  varies between -20 and 20 degrees and that the speed 
varies between 700 and 1400 m/s. Use a 15-by-12 grid of linearly spaced  pairs for
scheduling:

nA = 15;   % number of alpha values

nV = 12;   % number of V values

alphaRange = linspace(-20,20,nA)*pi/180;

VRange = linspace(700,1400,nV);

[alpha,V] = ndgrid(alphaRange, VRange);

For each flight condition , linearize the airframe dynamics at trim (zero normal
acceleration and pitching moment). This requires computing the elevator deflection  and
pitch rate  that result in steady  and .
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Use operspec to specify the trim condition, use findop to compute the trim values of
 and , and linearize the airframe dynamics for the resulting operating point. See the

"Trimming and Linearizing an Airframe" example for details. Repeat these steps for the
180 flight conditions .

% Compute trim condition for each ($\alpha, V$) pair:

Options = findopOptions('DisplayReport','off','OptimizerType','lsqnonlin');

Options.OptimizationOptions.Algorithm = 'trust-region-reflective';

clear op report

for ct = 1:nA*nV

   alpha_ini = alpha(ct);      % Incidence [rad]

   v_ini = V(ct);              % Speed [m/s]

   % Specify trim condition

   opspec = operspec('scdairframeTRIM');

   % Xe,Ze: known, not steady

   opspec.States(1).Known = [1;1];

   opspec.States(1).SteadyState = [0;0];

   % u,w: known, w steady

   opspec.States(3).Known = [1 1];

   opspec.States(3).SteadyState = [0 1];

   % theta: known, not steady

   opspec.States(2).Known = 1;

   opspec.States(2).SteadyState = 0;

   % q: unknown, steady

   opspec.States(4).Known = 0;

   opspec.States(4).SteadyState = 1;

   % TRIM

   [op(ct), report(ct)] = findop('scdairframeTRIM',opspec,Options);

end

The op array contains the operating points found by FINDOP that will be used for
linearization. The report array contains record of input, output and state values at each
point.

Linearization I/Os

io = [linio('scdairframeTRIM/delta',1,'in');...        % delta

   linio('scdairframeTRIM/Airframe Model',1,'out');... % alpha
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   linio('scdairframeTRIM/Airframe Model',2,'out');... % V

   linio('scdairframeTRIM/Airframe Model',3,'out');... % q

   linio('scdairframeTRIM/Airframe Model',4,'out');... % az

   linio('scdairframeTRIM/Airframe Model',5,'out')];   % gamma

Linearize at trim conditions

G = linearize('scdairframeTRIM',op,io);

G = reshape(G,[nA nV]);

G.u = 'delta';

G.y = {'alpha','V','q' 'az' 'gamma'};

G.SamplingGrid = struct('alpha',alpha,'V',V);

This produces a 15-by-12 array of linearized plant models at the 180 flight conditions
. The plant dynamics vary substantially across the flight envelope, including

scheduling locations where the local dynamics are unstable.

bodemag(G(3:5,:,:,:)), title('Variations in airframe dynamics')
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The LPV System Block

The LPV System block in the Control System Toolbox (TM) block library facilitates
simulation of linear parameter varying systems. The primary data required by the block
is the state-space system array G that was generated by batch linearization. We augment
this with the information about the input/output, state and state derivative offsets that
was collected during the model trim (FINDOP) operation.

Collect offset data

uOffset = zeros([1, 1, nA, nV]); % input value at trim point

yOffset = zeros([5, 1, nA, nV]); % output values at trim point

xOffset = zeros([4, 1, nA, nV]); % state values at trim point
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dxOffset = zeros([4, 1, nA, nV]); % state derivative values at trim point

for ct = 1:nA*nV

   rep = report(ct);

   % record inputs values at trim points

   uOffset(:,:,ct) = rep.Inputs.u;

   % record output values at trim points

   yOffset(1,:,ct) = rep.Outputs(1).y; % same as alpha(ct)

   yOffset(2,:,ct) = rep.Outputs(2).y; % same as V(ct)

   yOffset(3,:,ct) = rep.Outputs(3).y;

   yOffset(4,:,ct) = rep.Outputs(4).y;

   yOffset(5,:,ct) = rep.Outputs(5).y;

   % record state values at trim points

   % (position related states (State # 1) does not influence the

   % linearized dynamics)

   xOffset(1,:,ct)   = rep.States(2).x;

   xOffset(2:3,:,ct) = rep.States(3).x;

   xOffset(4,:,ct)   = rep.States(4).x;

   % record derivatives of nonsteady states

   dxOffset(1,:,ct)   = rep.States(2).dx;

   dxOffset(2,:,ct)   = rep.States(3).dx(1);

end

LPV Model Simulation

Open the system scdairframeLPV that contains an LPV System block that has been
configured based on linear system array G and the various offsets.

open_system('scdairframeLPV')
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An input signal was prepared based on a desired trajectory of the airframe. This signal
u and corresponding time vector t are saved in the scdairframeLPVsimdata.mat file.
Initial conditions for simulation:
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alpha_ini = 0;  v_ini = 700;

x0 = [0; 700; 0; 0];

sim('scdairframeLPV')
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The simulation shows good emulation of the airframe response by the LPV system. We
chose a very fine gridding of scheduling space leading to a large number (180) of linear
models. Large array sizes can increase implementation costs. However, the advantage of
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LPV representations is that we can adjust the scheduling grid (and hence the number of
linear systems in the array) based on:

* The scheduling subspace spanned by the anticipated trajectory

* The level of accuracy desired in an application

The former information helps cut down the range of scheduling variables to use. The
latter helps pick an optimal resolution (spacing) of samples in the scheduling space.

Let us plot the actual trajectory of scheduling variables in the previous simulation
against the backdrop of gridded scheduling space. The  outputs were logged via
their scopes (contained inside the Compare Responses block of scdairframeLPV).

Stable = false(nA, nV);

for ct = 1:nA*nV

   Stable(ct ) = isstable(G(:,:,ct));

end

alpha_trajectory = Alpha_V_Data.signals(1).values(:,1);

V_trajectory = Alpha_V_Data.signals(2).values(:,1);

plot(alpha(Stable)*180/pi,V(Stable),'g.',...

   alpha(~Stable)*180/pi,V(~Stable),'k.',...

   alpha_trajectory,V_trajectory,'r.')

title('Trajectory of scheduling variables')

xlabel('\alpha'); ylabel('V')

legend('Stable locations','Unstable locations','Actual trajectory')
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The trajectory traced during simulation is shown in red. Note that it traverses both the
stable and unstable regions of the scheduling space. Suppose we want to implement
this model on a target hardware for input profiles similar to the one used for simulation
above, while using the least amount of memory. The simulation suggests that the
trajectory mainly stays in the 890 to 1200 m/s range of velocities and -15 to 12 degree
range of incidence angle. Furthermore, we can explore increasing the spacing between
the sampling points. Suppose we use only the every third sample along the  dimension
and every second point along the  dimension. The reduced system array meeting these
constraints can be extracted from G as follows:

I1 = find(alphaRange>=-15*pi/180 & alphaRange<=12*pi/180);

I2 = find(VRange>=890 & VRange<=1200);

I1 = I1(1:2:end);
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I2 = I2(1:3:end);

Gr = G(:,:,I1,I2);

size(Gr)

5x2 array of state-space models.

Each model has 5 outputs, 1 inputs, and 4 states.

We have thus reduced the original array of size 15-by-12 to a more economical size of 5-
by-2. We simulate the reduced model and check its fidelity in reproducing the original
behavior.

% Change directory to a writable directory since model would need to be

% recompiled

cwd = pwd;

cd(tempdir)

lpvblk = 'scdairframeLPV/LPV System';

set_param(lpvblk,...

   'sys','Gr',...

   'uOffset','uOffset(:,:,I1,I2)',...

   'yOffset','yOffset(:,:,I1,I2)',...

   'xOffset','xOffset(:,:,I1,I2)',...

   'dxOffset','dxOffset(:,:,I1,I2)')

sim('scdairframeLPV')

cd(cwd)
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No significant reduction in overlap between the response of the original model and its
LPV proxy was observed.

close_system('scdairframeTRIM',0)
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close_system('scdairframeLPV',0)

Conclusions

In this example, we explored a process of generating an LPV proxy of a nonlinear
system. We began by identifying suitable scheduling parameters and computing linear
approximation of the system over a grid of their values. The array of linear systems and
the associated operating point offsets thus obtained were used to configure the properties
of an LPV System block.

The LPV model can serve as a proxy for the original system in situations where faster
simulations are required. The linear systems used by the LPV model may also be
obtained by system identification techniques (with additional care required to maintain
state consistency across the array). The LPV model can provide a good surrogate for
initializing simulink design optimization problems and performing fast hardware-in-loop
simulations.
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LPV Approximation of a Boost Converter Model

This example shows how you can obtain a Linear Parameter Varying (LPV)
approximation of a SimPowerSystems™ model of a Boost Converter. The LPV
representation allows quick analysis of average behavior at various operating conditions.

Boost Converter Model

A Boost Converter circuit converts a DC voltage to another DC voltage by controlled
chopping or switching of the source voltage. The request for a certain load voltage is
translated into a corresponding requirement for the transistor duty cycle. The duty cycle
modulation is typically several orders of magnitude slower than the switching frequency.
The net effect is attainment of an average voltage with relatively small ripples. See
Figure 1 for a zoomed-in view of this dynamics.
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Figure 1: Converter output (load) voltage generation

In practice there are also disturbances in the source voltage  and the resistive load 
affecting the actual load voltage .

Open the Simulink model.

mdl = 'BoostConverterExampleModel';

open_system(mdl);
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Figure 2: SimPowerSystems based Boost Converter model

The circuit in the model is characterized by high frequency switching. The model uses
a sample time of 25 ns. The "Boost Converter" block used in the model is a variant
subsystem that implements 3 different versions of the converter dynamics. Double click
on the block to view these variants and their implementations. The model takes the duty
cycle value as its only input and produces three outputs - the inductor current, the load
current and the load voltage.

The model simulates slowly (when looking for changes in say 0 - 10 ms) owing to the high
frequency switching elements and small sample time.
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Batch Trimming and Linearization

In many applications, the average voltage delivered in response to a certain duty cycle
profile is of interest. Such behavior is studied at time scales several decades larger
than the fundamental sample time of the circuit. These "average models" for the circuit
are derived by analytical considerations based on averaging of power dynamics over
certain time periods. The model BoostConverterExampleModel implements such an
average model of the circuit as its first variant, called "AVG Voltage Model". This variant
typically executes faster than the "Low Level Model" variant.

The average model is not a linear system. It shows nonlinear dependence on the duty
cycle and the load variations. To aid faster simulation and voltage stabilizing controller
design, we can linearize the model at various duty cycle and load values. The inputs and
outputs of the linear system would be the same as those of the original model.

We use the snapshot time based trimming and linearization approach. The scheduling
parameters are the duty cycle value (d) and the resistive load value (R). The model is
trimmed at various values of the scheduling parameters resulting in a grid of linear
models. For this example, we chose a span of 10%-60% for the duty cycle variation and of
4-15 Ohms for the load variation. 5 values in these ranges are picked for each scheduling
variable and linearization obtained at all possible combinations of their values.

Scheduling parameters: d: duty cycle R: resistive load

nD = 5; nR = 5;

dspace = linspace(0.1,0.6,nD); % nD values of "d" in 10%-60% range

Rspace = linspace(4,15,nR);    % nR values of "R" in 4-15 Ohms range

[dgrid,Rgrid] = ndgrid(dspace,Rspace);  % all possible combinations of "d" and "R" values

A simulation of the model under various conditions shows that the model's outputs settle
down to their steady state values before 0.01 s. Hence we use t = 0.01s as the snapshot
time.

Declare number of model inputs, outputs and states

ny = 3; nu = 1; nx = 7;

ArraySize = size(dgrid);

Initialize I/O and state offset data

yoff = zeros([ny,1,ArraySize]);

uoff = zeros([nu,1,ArraySize]);

xoff = zeros([nx,1,ArraySize]);
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Compute equilibrium operating points using findop. The model has been configured to
simulate until the snapshot time of 0.01 seconds. The following lines of code generate
the operating points and offset data. The code takes several minutes to finish. For
convenience the results are saved in the BoostConverterLPVExampleData.mat file.

%{

clear op

for ct = 1:nD*nR

   d = dgrid(ct);

   R = Rgrid(ct);

   fprintf('Generating operating point for d = %1.4g, R = %1.4g ...',d,R);

   % Simulate model to capture model outputs and states

   sim(mdl);

   yoff(:,1,ct) = yout(end,:)';

   xoff(:,1,ct) = xFinal';

   uoff(:,1,ct) = d;

   % FINDOP for operating point extraction

   op(ct) = findop(mdl,0.01); % operating point at t = 0.01 seconds

   fprintf('done.\n')

end

%}

load BoostConverterLPVExampleData op yoff xoff uoff

Get linearization input-output specified in the model.

io = getlinio(mdl);

Linearize the model at the operating point array op and attach SamplingGrid
information.

linsys = linearize(mdl, op, io);

linsys = reshape(linsys,[nD nR]);

linsys.SamplingGrid = struct('d',dgrid,'R',Rgrid);

Plot the linear system array

bodemag(linsys)

grid on
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Figure 3: Bode plot of linear system array obtained over the scheduling parameter grid.

LPV Simulation: Preliminary Analysis

linsys is an array of 25 linear state-space models, each containing 1 input, 3 outputs
and 7 states. The models are discrete-time with sample time of 25 ns. The bode plot
shows significant variation in dynamics over the grid of scheduling parameters. The
linear system array and the accompanying offset data (uoff, yoff and xoff) can be
used to configure the LPV system block. The "LPV model" thus obtained serves as a
linear system array approximation of the average dynamics. The LPV block configuration
is available in the BoostConverterLPVModel_Prelim model.

lpvmdl = 'BoostConverterLPVModel_Prelim';

open_system(lpvmdl);
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Figure 4: LPV model configured using linsys
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For simulating the model, we use an input profile for duty cycle that roughly covers
its scheduling range. We also vary the resistive load to simulate the case of load
disturbances.

Generate simulation data

t = linspace(0,.05,1e3)';

din = 0.25*sin(2*pi*t*100)+0.25;

din(500:end) = din(500:end)+.1;  % the duty cycle profile

rin = linspace(4,12,length(t))';

rin(500:end) = rin(500:end)+3;

rin(100:200) = 6.6;              % the load profile

ax = plotyy(t,din,t,rin);

xlabel(ax(1),'Time (s)')

ylabel(ax(1), 'Duty Cycle')

ylabel(ax(2), 'Resistive Load (Ohm)')

title(ax(1),'Scheduling Parameter Profiles for Simulation')
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Figure 5: Scheduling parameter profiles chosen for simulation

Note: the code for generating the above signals has been added to the model's PreLoadFcn
callback for independent loading and execution. If you want to override these settings and
try your own, overwrite this data in base workspace.

Simulate the LPV model

sim(lpvmdl, 'StopTime', '0.004');
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Figure 6: LPV simulation results. Note the large signal magnitudes.

Simulation shows that the LPV model is unstable and its simulation results quickly
diverge. The reason is that the states of the model contain a large difference in their
orders of magnitudes leading to badly scaled results. The resulting linear systems are
also unobservable and unstable. The poles of the system array are clustered around the
origin or the unit circle owing to the high sampling frequency. Next we explore if we can
improve the model's quality.

Model Order Reduction

Let us evaluate the contribution of the linear system states to the system energy across
the array.
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HSV = zeros(nx,nD*nR);

for ct = 1:nD*nR

   HSV(:,ct) = hsvd(linsys(:,:,ct));

end

ax = gca;

bar3(ax, HSV)

view(ax,[-69.5 16]);

xlabel(ax, 'System Number')

ylabel(ax, 'State Number')

zlabel(ax, 'State Energy')

Figure 7: Bar chart of Hankel Singular Values of the linear system array linsys. The 5-
by-5 array has been flattened into a 25 element system vector for plotting.
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The plot shows that only 2 of the 7 states contribute significantly to the system energy
across the array. We use this information to reduce the 7-state system array linsys to
a 2-state array using balred. While doing so, we use the "truncate" state elimination
method to preserve the meaning of retained states. Note that the LPV representation
requires state-consistency across the linear system array.

opt = balredOptions('StateElimMethod','Truncate');

linsys2 = linsys;

for ct = 1:nD*nR

   linsys2(:,:,ct) = balred(linsys(:,:,ct),2,opt);

end

xoff2 = xoff(1:2,:,:,:); % the state offsets

Upsampling the Model Array to Desired Time Scale

Next we note that the model array linsys (or linsys2) has a sample time of 25ns.
We need the model to study the changes in outputs in response to duty cycle and load
variations. These variations are much slower than the system's fundamental sample
time and occur in the microsecond scale (0 - 50 ms). Hence we upsample the system array
linsys2 by a factor of 1e4.

linsys3 = d2d(linsys2, linsys2.Ts*1e4);

We are now ready to make another attempt at LPV model assembly using the linear
system array linsys3 and offsets yoff, uoff and xoff2.

LPV Simulation: Final

The preconfigured model BoostConverterLPVModel_Final uses linsys3 and the
accompanying offset data to simulate the LPV model.

lpvmdl = 'BoostConverterLPVModel_Final';

open_system(lpvmdl);

sim(lpvmdl);
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Figure 8: LPV model simulation using the reduced/scaled linear system array linsys3.
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The LPV model simulates significantly faster than the original model
BoostConverterExampleModel. But how do the results compare against those
obtained from the original boost converter model? To check this, open model
BoostConverterResponseComparison. This model has Boost Converter block
configured to use the high-fidelity "Low Level Model" variant. It also contains the LPV
block whose outputs are superimposed over the outputs of the boost converter in the
three scopes.

mdl = 'BoostConverterResponseComparison';

open_system(mdl);

% sim(mdl); % uncomment to run

Figure 9: Model used for comparing the response of high fidelity model with the LPV
approximation of its average behavior.
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The simulation command has been commented out; uncomment it to run. The results are
shown in the scope snapshots inserted below.

Figure 10: Inductor current signals. Blue: original, Magenta: LPV system response
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Figure 11: Load current signals. Blue: original, Magenta: LPV system response
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Figure 12: Load voltage signal. Blue: original, Magenta: LPV system response

The simulation runs quite slowly due to the fast switching dynamics in the boost
converter circuit. The results show that the LPV model is able to capture the average
behavior quite nicely.

Conclusions

By using the duty cycle input and the resistive load as scheduling parameters, we were
able to obtain linear approximations of average model behavior in the form of a state-
space model array. This model array was further simplified by model reduction and
sample rate conversion operations.
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The resulting model array together with operating point related offset data was used
to create an LPV approximation of the nonlinear average behavior. Simulation studies
show that the LPV model is able to emulate the average behavior of a high-fidelity
SimPowerSystems model with good accuracy. The LPV model also consumes less memory
and simulates significantly faster than the original system.

close_system('BoostConverterExampleModel',0)

close_system('BoostConverterLPVModel_Prelim',0)

close_system('BoostConverterLPVModel_Final',0)

close_system('BoostConverterResponseComparison',0)
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Frequency Response Model Applications

You can estimate the frequency response of a Simulink model as a frequency response
model (frd object), without modifying your Simulink model.

Applications of frequency response models include:

• Validating exact linearization results.

Frequency response estimation uses a different algorithm to compute a linear
model approximation and serves as an independent test of exact linearization. See
“Frequency-Domain Validation of Linearization”.

• Analyzing linear model dynamics.

Designing controller for the plant represented by the estimated frequency response
using Control System Toolbox software.

• Estimating parametric models.

See “Estimating Frequency Response Models with Noise Using System Identification
Toolbox” on page 3-70.
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What Is a Frequency Response Model?

Frequency response describes the steady-state response of a system to sinusoidal inputs.

For a linear system, a sinusoidal input of frequency ω:

u t A tu( ) sin= w

results in an output that is also a sinusoid with the same frequency, but with a different
amplitude and phase θ:

y t A ty( ) sin( )= +w q

q

A

A

u

y

u(t)

y(t)

G(s)

u(t) y(t)

Linear System

Frequency response G(s) for a stable system describes the amplitude change and phase
shift as a function of frequency:
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where Y(s) and U(s) are the Laplace transforms of y(t) and u(t), respectively.
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Model Requirements

You can estimate the frequency response of one or more blocks in a stable Simulink
model at steady state.

Your model can contain any Simulink blocks, including blocks with event-based
dynamics. Examples of blocks with event-based dynamics include Stateflow charts,
triggered subsystems, pulse width modulation (PWM) signals.

u(t) y(t)

Estimate frequency response
for these blocks

Frequency
response

model

You should disable the following types of blocks before estimation:

• Blocks that simulate random disturbances (noise).

For alternatives ways to model systems with noise, see “Estimating Frequency
Response Models with Noise Using Signal Processing Toolbox” on page 3-68.

• Source blocks that generate time-varying outputs that interfere with the estimation.
See “Effects of Time-Varying Source Blocks on Frequency Response Estimation”.
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Estimation Requires Input and Output Signals

Frequency response estimation requires an input signal at the linearization input point
to excite the model at frequencies of interest, such as a chirp or sinestream signal. A
sinestream input signal is a series of sinusoids, where each sine wave excites the system
for a period of time. You can inject the input signal anywhere in your model and log the
simulated output, without having to modify your model.

Frequency response estimation adds the input signal you design to the existing Simulink
signals at the linearization input point, and simulates the model to obtain the output at
the linearization output point. For more information about supported input signals and
their impact on the estimation algorithm, see “Creating Input Signals for Estimation” on
page 3-8.

u(t)

Linearization
input

y(t)

Linearization
outputEstimate frequency response

for these blocks

For multiple-input multiple-output (MIMO) systems, frequency response estimation
injects the signal at each input channel separately to simulate the corresponding
output signals. The estimation algorithm uses the inputs and the simulated outputs to
compute the MIMO frequency response. If you want to inject different input signal at
the linearization input points of a multiple-input system, treat your system as separate
single-input systems. Perform independent frequency response estimations for each
linearization input point using frestimate, and concatenate your frequency response
results.

Frequency response estimation correctly handles open-loop linearization input and
output points. For example, if the input linearization point is open, the input signal
you design adds to the constant operating point value. The operating point is the initial
output of the block with a loop opening.

The estimated frequency response is related to the input and output signals as:
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where uest(t) is the injected input signal and yest(t) is the corresponding simulated output
signal.
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Creating Input Signals for Estimation

In this section...

“Supported Input Signals” on page 3-8
“Creating Sinestream Input Signals” on page 3-8
“Creating Chirp Input Signals” on page 3-17

Supported Input Signals

Frequency response estimation uses sinestream or chirp input signals.

Sinusoidal Signal When to Use

Sinestream Recommended for most situations. Especially useful when:

• Your system contains strong nonlinearities.
• You require highly accurate frequency response models.

See “Creating Sinestream Input Signals” on page 3-8.
Chirp • Your system is nearly linear in the simulation range.

• You want to quickly obtain a response for a lot of
frequency points.

See “Creating Chirp Input Signals” on page 3-17.

Creating Sinestream Input Signals

• “What Is a Sinestream Signal?” on page 3-8
• “Create Sinestream Signals Using Linear Analysis Tool” on page 3-9
• “Create Sinestream Signals (MATLAB Code)” on page 3-12
• “How Frequency Response Estimation Treats Sinestream Inputs” on page 3-13

What Is a Sinestream Signal?

A sinestream signal consists of several adjacent sine waves of varying frequencies. Each
frequency excites the system for a period of time.
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Create Sinestream Signals Using Linear Analysis Tool

This example shows how to create a sinestream input signal based upon a linearized
model using the Linear Analysis Tool.

1 Obtain a linearized model, linsys1.

For example, see “Linearize Simulink Model at Model Operating Point”, which shows
how to linearize a model.

2 In the Linear Analysis Tool, click the Frequency Response Estimation tab. In the
Input Signal list, select Sinestream.

The Create sinestream input dialog box opens.
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Note: Selecting Sinestream creates a continuous-time signal. To generate a
discrete-time signal, choose Fixed Sample Time Sinestream from the Input
Signal list.

3 In the System list, select linsys1. Click Initialize frequencies and parameters.

This action adds frequency points to the Frequency content viewer.
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The software automatically selects frequency points based on the dynamics of
linsys1. The software also automatically determines other parameters of the
sinestream signal, including:

• amplitude
• number of periods
• settling periods
• ramp periods
• number of samples at each period

SettlingPeriods

NumPeriods

4 Click OK to create the sinestream input signal. A new input signal, in_sine1,
appears in the Linear Analysis Workspace.
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Create Sinestream Signals (MATLAB Code)

You can create a sinestream signal from both continuous-time and discrete-time signals
in Simulink models using the following commands:

Signal at Input Linearization
Point

Command

Continuous frest.Sinestream

Discrete frest.createFixedTsSinestream

Create a sinestream signal in the most efficient way using a linear model that accurately
represents your system dynamics:

input = frest.Sinestream(sys)

sys is the linear model you obtained using exact linearization.

You can also define a linear system based on your insight about the system using the tf,
zpk, and ss commands.

For example, create a sinestream signal from a linearized model:

magball

io(1) = linio('magball/Desired Height',1);

io(2) = linio('magball/Magnetic Ball Plant',...

               1,'output');
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sys = linearize('magball',io);

input = frest.Sinestream(sys)

The resulting input signal stores the frequency values as Frequency.
frest.Sinestream automatically specifies NumPeriods and SettlingPeriods for
each frequency:

      Frequency           : [0.05786;0.092031;0.14638 ...] (rad/s)

      Amplitude           : 1e-005

      SamplesPerPeriod    : 40

      NumPeriods          : [4;4;4;4 ...]

      RampPeriods         : 0

      FreqUnits (rad/s,Hz): rad/s

      SettlingPeriods     : [1;1;1;1 ...]

      ApplyFilteringInFRESTIMATE (on/off)    : on

      SimulationOrder (Sequential/OneAtATime): Sequential

For more information about sinestream options, see the frest.Sinestream reference
page.

You can plot your input signal using plot(input).

The mapping between the parameters of the Create sinestream input dialog box in the
Linear Analysis Tool and the options of frest.Sinestream is as follows:

Create sinestream input dialog box frest.Sinestream option

Amplitude 'Amplitude'

Number of periods 'NumPeriods'

Settling periods 'SettlingPeriods'

Ramp periods 'RampPeriods'

Number of samples at each period 'SamplesPerPeriod'

How Frequency Response Estimation Treats Sinestream Inputs

Frequency response estimation using frestimate performs the following operations on
a sinestream input signal:

1 Injects the sinestream input signal you design, uest(t), at the linearization input
point.

2 Simulates the output at the linearization output point.
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frestimate adds the signal you design to existing Simulink signals at the
linearization input point.

u(t)

u    (t)

y(t)

est

3 Discards the SettlingPeriods portion of the output (and the corresponding input)
at each frequency.

The simulated output at each frequency has a transient portion and steady state
portion. SettlingPeriods corresponds to the transient components of the output
and input signals. The periods following SettlingPeriods are considered to be at
steady state.



 Creating Input Signals for Estimation

3-15

SettlingPeriods

Input

Output

4 Filters the remaining portion of the output and the corresponding input signals at
each input frequency using a bandpass filter.

When a model is not at steady state, the response contains low-frequency transient
behavior. Filtering typically improves the accuracy of your model by removing
the effects of frequencies other than the input frequencies. These frequencies are
problematic when your sampled data has finite length. These effects are called
spectral leakage.

frestimate uses a finite impulse response (FIR) filter. The software sets the
filter order to match the number of samples in a period such that any transients
associated with filtering appear only in the first period of the filtered steady-state
output. After filtering, frestimate discards the first period of the input and output
signals.
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SettlingPeriods
Filtered
portion

Used for
estimation

Input

Output

You can specify to disable filtering during estimation using the signal
ApplyFilteringInFRESTIMATE property.

5 Estimates the frequency response of the processed signal by computing the ratio of
the fast Fourier transform of the filtered steady-state portion of the output signal
yest(t) and the fast Fourier transform of the filtered input signal uest(t):

G s
y test

( )
( )
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fast Fourier transform of 

fast Fourier transforrm u test( )
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To compute the response at each frequency, frestimate uses only the simulation
output at that frequency.

Creating Chirp Input Signals

• “What Is a Chirp Signal?” on page 3-17
• “Create Chirp Signals Using Linear Analysis Tool” on page 3-17
• “Create Chirp Signals (MATLAB Code)” on page 3-20

What Is a Chirp Signal?

The swept-frequency cosine (chirp) input signal excites your system at a range of
frequencies, such that the input frequency changes instantaneously.

Alternatively, you can use the sinestream signal, which excites the system at each
frequency for several periods. See “Supported Input Signals” on page 3-8 for more
information about choosing your signal.

Create Chirp Signals Using Linear Analysis Tool

This example shows how to create a chirp input signal based upon a linearized model
using the Linear Analysis Tool.

1 Obtain a linearized model, linsys1.

For example, see “Linearize Simulink Model at Model Operating Point”, which shows
how to linearize a model.

2 In the Linear Analysis Tool, click the Frequency Response Estimation tab. In the
Input Signal list, select Chirp.
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The Create chirp input dialog box opens.

3 In the System list, select linsys1 selected. Click Compute parameters.
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The software automatically selects frequency points based on the dynamics of
linsys1. The software also automatically determines other parameters of the chirp
signal, including:

• frequency range at which the linear system has interesting dynamics (see the
From and To boxes of Frequency Range).

• amplitude.
• sample time. To avoid aliasing, the Nyquist frequency of the signal is five times

the upper end of the frequency range, 2

5

p

* max( )FreqRange
.

• number of samples.
• initial phase.
• sweep method
• sweep shape.

4 Click OK to create the chirp input signal. A new input signal in_chirp1 appears in
the Linear Analysis Workspace.
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Create Chirp Signals (MATLAB Code)

Create a chirp signal in the most efficient way using a linear model that accurately
represents your system dynamics:

input = frest.Chirp(sys)

sys can be the linear model you obtained using exact linearization techniques. You can
also define a linear system based on your insight about the system using the tf, zpk, and
ss commands.

For example, create a chirp signal from a linearized model:

magball

io(1) = linio('magball/Desired Height',1);

io(2) = linio('magball/Magnetic Ball Plant',...

               1,'output');

sys = linearize('magball',io);

input = frest.Chirp(sys)

The input signal is:
      FreqRange              : [0.0578598408615998 10065.3895573969] (rad/s)

      Amplitude              : 1e-005

      Ts                     : 0.00012484733494616 (sec)

      NumSamples             : 1739616

      InitialPhase           : 270 (deg)

      FreqUnits (rad/s or Hz): rad/s

      SweepMethod(linear/    : linear

                  quadratic/
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                  logarithmic)

For more information about chirp signal properties, see the frest.Chirp reference
page.

You can plot your input signal using plot(input).

The mapping between the parameters of the Create chirp input dialog box in the Linear
Analysis Tool and the options of frest.Chirp is as follows:

Create chirp input dialog box frest.Chirp option

Frequency range > From First element associated with the
'FreqRange' option

Frequency range > To Second element associated with the
'FreqRange' option

Amplitude 'Amplitude'

Sample time (sec) 'Ts'

Number of samples 'NumSamples'

Initial phase (deg) 'InitialPhase'

Sweep method 'SweepMethod'

Sweep shape 'Shape'
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Modifying Input Signals for Estimation

When the frequency response estimation produces unexpected results, you can try
modifying the input signal properties in the ways described in “Troubleshooting
Frequency Response Estimation” on page 3-44.

Modifying Sinestream Input Signal Using Linear Analysis Tool

Add Frequency Points to Sinestream Input Signal

This example shows how to add frequency points to an existing sinestream input signal
using the Linear Analysis Tool.

1 Create a sinestream input signal, in_sine1, as shown in “Create Sinestream
Signals Using Linear Analysis Tool” on page 3-9.

2 Double-click in_sine1 in the Linear Analysis Workspace area of the Linear
Analysis Tool.

The Edit sinestream dialog box opens.
3

In the Frequency content viewer, click  in the Frequency content toolbar.

The Add frequencies dialog box opens.

4 Enter the frequency range of the points to be added.
5 Click OK to add the specified frequency points to in_sine1.

Delete Frequency Point from Sinestream Input Signal

This example shows how to delete frequency points from an existing sinestream input
signal using the Linear Analysis Tool.



 Modifying Input Signals for Estimation

3-23

1 Create a sinestream input signal, in_sine1, as shown in “Create Sinestream
Signals Using Linear Analysis Tool” on page 3-9.

2 Double-click in_sine1 in the Linear Analysis Workspace area of the Linear
Analysis Tool.

The Edit sinestream dialog box opens.
3 In the Frequency content viewer, select the frequency point to delete.

The selected point appears blue.

Tip To select multiple frequency points, click and drag across the frequency points of
interest.

4
Click  in the Frequency content toolbar to delete the selected frequency point(s)
from the Frequency content viewer.

5 Click OK to save the modified input signal.

Modify Parameters for a Frequency Point in Sinestream Input Signal

This example shows how to modify signal parameters of an existing sinestream input
signal using the Linear Analysis Tool.

1 Create a sinestream input signal, in_sine1, as shown in “Create Sinestream
Signals Using Linear Analysis Tool” on page 3-9.

2 Double-click in_sine1 in the Linear Analysis Workspace area of the Linear
Analysis Tool.

The Edit sinestream dialog box opens.
3 In the Frequency content viewer, select the frequency point(s) to delete.
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The selected point(s) appears blue.
4 Enter the new values for the signal parameters.

If the parameter value is <mixedvalue>, the parameter has different values for
some of the frequency points selected.

5 Click OK to save the modified input signal.

Modifying Sinestream Input Signal (MATLAB Code)

For example, suppose that you used a sinestream input signal, and the output at
a specific frequency did not reach steady state. In this case, you can modify the
characteristics of the sinestream input at the corresponding frequency.

input.NumPeriods(index)=NewNumPeriods;

input.SettlingPeriods(index)=NewSettlingPeriods;

where index is the frequency value index of the sine wave you want to modify.
NewNumPeriods and NewSettlingPeriods are the new values of NumPeriods and
SettlingPeriods, respectively.

To modify several signal properties at a time, you can use the set command. For
example:

input = set(input,'NumPeriods',NewNumPeriods,...

                  'SettlingPeriods',NewSettlingPeriods)

After modifying the input signal, repeat the estimation.
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Estimate Frequency Response Using Linear Analysis Tool
This example shows how to estimate the frequency response of a Simulink model using
the Linear Analysis Tool.

Open Simulink model and Linear Analysis Tool.

1 Open Simulink model.

sys = 'scdDCMotor';

open_system(sys);

2 In the Simulink Editor, select Analysis > Control Design > Linear Analysis. This
action opens the Linear Analysis Tool for the model.

Create an input signal for estimation.

1 In the Linear Analysis Tool, click the Frequency Response Estimation tab.
2 In the Input Signal list, select Sinestream to open the Create sinestream input

dialog box.
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3
Click  to open the Add frequencies dialog box. You can use this dialog box to add
frequency points to the input signal.

4 Specify the frequency range for the input.

Enter .1 in the From box and 100 in the To box. Enter 100 in the box for the number
of frequency points.

Click OK. This action adds logarithmically spaced frequency points between 0.1 rad/
s and 100 rad/s to the input signal. The added points are visible in the Frequency
content viewer of the Create sinestream input dialog box.

5 In the Frequency content viewer of the Create sinestream input dialog box, select all
the frequency points.

6 Specify the amplitude of the input signal.
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Enter 1 in the Amplitude box.
7 Click OK to create the sinestream input signal.

The new input signal, in_sine1, appears in the Linear Analysis Workspace.

Estimate frequency response.

Click  to estimate the frequency response. The frequency response estimation result,
estsys1, appears in the Linear Analysis Workspace.
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Estimate Frequency Response with Linearization-Based Input Using
Linear Analysis Tool

This example shows how to perform frequency response estimation for a model using the
Linear Analysis Tool. The input signal used for estimation is based on the linearization of
the model.

Step 1. Linearize Simulink model.

• Open Simulink model.

sys = 'scdDCMotor';

open_system(sys);

• Open the Linear Analysis Tool for the model.

In the Simulink Editor, select Analysis > Control Design > Linear Analysis.
• In the Plot Result list, choose New Bode.
• Linearize the model.

Click . A new linearized model, linsys1, appears in the Linear Analysis
Workspace.

The software used the model initial conditions as the operating point to generate
linsys1.
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Step 2. Create sinestream input signal.

• Click the Frequency Response Estimation tab.

In this tab, you estimate the frequency response of the model.
• Open the Create sinestream input dialog box.

Select Sinestream from the Input Signal list to open the Create sinestream input
dialog box.
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• Initialize the input signal frequencies and parameters based on linsys1.

Click Initialize frequencies and parameters.

The Frequency content viewer is populated with frequency points. The software
chooses the frequencies and input signal parameters automatically based on the
dynamics of linsys1.

• In the Frequency content viewer of the Create sinestream input dialog box, select all
the frequency points.
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• Specify the amplitude of the input signal.

Enter 1 in the Amplitude box.
• Create the input sinestream signal.

Click OK. The input signal in_sine1 appears in the Linear Analysis Workspace.

Step 3. Select the plot to display the estimation result.

In the Plot Result list, choose Bode Plot 1 to add the next computed linear system to
Bode Plot 1.

Step 4. Estimate frequency response.

Click . The estimated system, estsys1, appears in the Linear Analysis
Workspace.
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Step 5. Examine estimation results.

Bode Plot 1 now shows the Bode responses for the estimated model and the linearized
model.

The frequency response for the estimated model matches that of the linearized model.
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Estimate Frequency Response (MATLAB Code)

Prerequisites

• Open Simulink model.

Example:

mdl = 'scdplane';

open_system(mdl)

To learn more about general model requirements, see “Model Requirements” on page
3-5.

• Create an input signal for estimation.

Example:

io(1) = linio('scdplane/Sum1',1)

io(2) = linio('scdplane/Gain5',1,'output')

sys = linearize('scdplane',io);

input = frest.Sinestream(sys)

See “Creating Input Signals for Estimation” on page 3-8.
• (Optional) If your model has not reached steady state, initialize the model at a steady

state operating point.

You can check whether your model is at steady state by simulating the model. See
operspec and findop reference pages.

1 Use linearization I/O points to specify input and output points for frequency response
estimation.

Example:

io(1) = linio('scdplane/Sum1',1)

io(2) = linio('scdplane/Gain5',1,'output')

Caution Avoid placing I/O points on bus signals.
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For more information about linearization I/O points, see “Specify Model Portion to
Linearize” and the linio reference page.

2 Identify all source blocks that generate time-varying signals in the signal path of the
linearization outputs. Such time-varying signals can interfere with the signal at the
linearization output points and produce inaccurate estimation results.

a First, use frest.findSources to identify time-varying source blocks that can
interfere with estimation. frest.findSources finds all time-varying source
blocks in the signal path of the linearization output points.

Example:

Identify the time-varying source blocks in the scdplane model:

srcblks = frest.findSources('scdplane',io); 

b Next, to disable these blocks during estimation, use frestimateOptions.

For example:

opts = frestimateOptions;

opts.BlocksToHoldConstant = srcblks;

For more information, see the frest.findSources and frestimateOptions
reference pages.

3 Estimate the frequency response.

Example:

[sysest,simout] = frestimate('scdplane',io,input,opts);

sysest is the estimated frequency response. simout is the simulated output that is
a Simulink.Timeseries object.

For more information about syntax and argument descriptions, see the frestimate
reference page.

Tip To speed up your estimation or decrease memory requirements, see “Managing
Estimation Speed and Memory” on page 3-74.
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4 Open the Simulation Results Viewer to analyze the estimated frequency response.
For example:

frest.simView(simout,input,sysest);

You can compare the estimated frequency response (sysest) to a system you
linearized using exact linearization (sys):

frest.simView(simout,input,sysest,sys);

For more information, see “Analyzing Estimated Frequency Response” on page
3-36.
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Analyzing Estimated Frequency Response

In this section...

“View Simulation Results” on page 3-36
“Interpret Frequency Response Estimation Results” on page 3-39
“Analyze Simulated Output and FFT at Specific Frequencies” on page 3-40
“Annotate Frequency Response Estimation Plots” on page 3-42
“Displaying Estimation Results for Multiple-Input Multiple-Output (MIMO) Systems”
on page 3-43

View Simulation Results

View Simulation Results Using Linear Analysis Tool

Use the Diagnostic Viewer to analyze the results of your frequency response estimation,
obtained by performing the steps in “Estimate Frequency Response Using Linear
Analysis Tool” on page 3-25.

To open the Diagnostic Viewer after performing frequency response estimation in the
Linear Analysis Tool:

1 In the Frequency Response Estimation tab, before performing the estimation
task, select the Launch Diagnostic Viewer check box.

This action sets the Diagnostic Viewer to open when the frequency response
estimation is performed.

2
Click  to estimate the frequency response of the model.
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The Diagnostic Viewer appears in the plot pane.

To open the Diagnostic Viewer to view an estimated model in the Linear Analysis Tool:

1 In the Linear Analysis Tab, select the estimated model using the Select Result
list.

2 Select Show diagnostic viewer in the Show Report list.
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View Simulation Results (MATLAB Code)

Use the Simulation Results Viewer to analyze the results of your frequency response
estimation, obtained by performing the steps in “Estimate Frequency Response
(MATLAB Code)” on page 3-33.

Open the Simulation Results Viewer using:

frest.simView(simout,input,sysest)

where simout is the simulated output, input is the input signal you created, and
sysest is the estimated frequency response.
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Interpret Frequency Response Estimation Results

By default, the Simulation Results Viewer shows these plots:

• “Select Plots Displayed in Simulation Results Viewer” on page 3-39
• “Frequency Response” on page 3-39
• “Time Response (Simulated Output)” on page 3-40
• “FFT of Time Response” on page 3-40

Select Plots Displayed in Simulation Results Viewer

• To select the plots displayed in the Diagnostic Viewer using the Linear Analysis Tool:

1 In the Figures tab, select the Diagnostic Viewer plot.
2 In the Plot Visibilities section, select the check boxes for the plots that you want

to view.

To modify plot settings, such as axis frequency units, right-click on a plot, and select
the corresponding option.

• To select the plots displayed in the Simulation Results Viewer, choose the
corresponding plot from the Edit > Plots menu. To modify plot settings, such as axis
frequency units, right-click a plot, and select the corresponding option.

Frequency Response

Use the Bode plot to analyze the frequency response. If the frequency response does
not match the dynamics of your system, see “Troubleshooting Frequency Response
Estimation” on page 3-44 for information about possible causes and solutions. While
troubleshooting, you can use the Bode plot controls to view the time response at the
problematic frequencies.
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You can usually improve estimation results by either modifying your input signal or
disabling the model blocks that drive your system away from the operating point, and
repeating the estimation.

Time Response (Simulated Output)

Use this plot to check whether the simulated output is at steady state at specific
frequencies. If the response has not reached steady state, see “Time Response Not at
Steady State” on page 3-44 for possible causes and solutions.

If you used the sinestream input for estimation, check both the filtered and the unfiltered
time response. You can toggle the display of filtered and unfiltered output by right-
clicking the plot and selecting Show filtered steady state output only. If both the
filtered and unfiltered response appear at steady state, then your model must be at
steady state. You can explore other possible causes in “Troubleshooting Frequency
Response Estimation” on page 3-44.

Note: If you used the sinestream input for estimation, toggling the filtered and unfiltered
display only updates the Time Response and FFT plots. This selection does not change
estimation results. For more information about filtering during estimation, see “How
Frequency Response Estimation Treats Sinestream Inputs” on page 3-13.

FFT of Time Response

Use this plot to analyze the spectrum of the simulated output.

For example, you can use the spectrum to identify strong nonlinearities. When the FFT
plot shows large amplitudes at frequencies other than the input signal, your model is
operating outside of linear range. If you are interested in analyzing the linear response of
your system for small perturbations, explore possible solutions in “FFT Contains Large
Harmonics at Frequencies Other than the Input Signal Frequency” on page 3-48.

Analyze Simulated Output and FFT at Specific Frequencies

Using the Diagnostic Viewer in Linear Analysis Tool

To analyze the results in the Diagnostic Viewer, use the controls in the Figures tab of
the Linear Analysis Tool.

1 In the Figures tab, select the Diagnostic Viewer plot.
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2 In the Frequency Selector section, specify the frequency range that you want to
inspect. Use the frequency units used in the Bode plot in the Diagnostic Viewer.

Using the Simulation Results Viewer

In the Simulation Results Viewer, use Bode controls to display the simulated output and
its spectrum at specific frequencies.

If you used the sinestream input signal in the estimation:

• Drag arrows individually to display the time response and FFT at specific frequencies.
• Drag the shaded region to shift the time response and FFT to a different frequency

range.

Select one or more
specific frequencies.

Shift frequency range.

If you used the chirp input signal in the estimation, drag the shaded region to increase or
decrease the frequency range of the displayed time response and FFT.



3 Frequency Response Estimation

3-42

Increase or decrease
selected frequency range.

Annotate Frequency Response Estimation Plots

You can display a data tip on the Time Response, FFT, and Bode plots in the Simulation
Results Viewer by clicking the corresponding curve. Dragging the data tip updates the
information.
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Data tips are useful for correcting poor estimation results at a specific sinestream
frequency, which requires you to modify the input at a specific frequency. You can use
the data tip to identify the frequency index where the response does not match your
system.

In the previous figure, the Time Response data tip shows that the frequency index is
11. You can use this frequency index to modify the corresponding portion of the input
signal. For example, to modify the NumPeriods and SettlingPeriods properties of the
sinestream signal, using MATLAB code:

input.NumPeriods(11) = 80;

input.SettlingPeriods(11) = 75;

To modify the sinestream in the Linear Analysis Tool, see “Modifying Sinestream Input
Signal Using Linear Analysis Tool” on page 3-22

Displaying Estimation Results for Multiple-Input Multiple-Output (MIMO)
Systems

For MIMO systems, view frequency response information for specific input and output
channels:

1 In the Simulation Results Viewer, right-click any plot, and select I/O Selector.
2 Choose the input channel in the From list. Choose the output channel in the To list.
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Troubleshooting Frequency Response Estimation

In this section...

“When to Troubleshoot” on page 3-44
“Time Response Not at Steady State” on page 3-44
“FFT Contains Large Harmonics at Frequencies Other than the Input Signal
Frequency” on page 3-48
“Time Response Grows Without Bound” on page 3-50
“Time Response Is Discontinuous or Zero” on page 3-51
“Time Response Is Noisy” on page 3-53

When to Troubleshoot

After you estimate the frequency response, you can analyze the results. If the frequency
response plot does not match the expected behavior of your system, you can use the time
response and FFT plots to help you improve the results.

If your estimation is slow or you run out of memory during estimation, see “Managing
Estimation Speed and Memory” on page 3-74.

Time Response Not at Steady State

What Does This Mean?

This time response has not reached steady state.
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This plot shows a steady-state time response.
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Because frequency response estimation requires steady-state input and output signals,
transients produce inaccurate estimation results.

For sinestream input signals, transients sometimes interfere with the estimation either
directly or indirectly through spectral leakage. For chirp input signals, transients
interfere with estimation.

How Do I Fix It?

Possible Cause Action

Model cannot initialize to steady
state.

• Increase the number of periods for frequencies
that do not reach steady state by changing the
NumPeriods and SettlingPeriods properties.
See “Modifying Input Signals for Estimation” on
page 3-22.
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Possible Cause Action

• Disable all time-varying source blocks in your
model and repeat the estimation. See “Effects
of Time-Varying Source Blocks on Frequency
Response Estimation” on page 3-56.

(Sinestream input) Not enough
periods for the output to reach
steady state.

• Increase the number of periods for frequencies
that do not reach steady state by changing
the NumPeriods and SettlingPeriods. See
“Modifying Input Signals for Estimation” on page
3-22.

• Check that filtering is enabled during
estimation. You enable filtering by setting the
ApplyFilteringInFRESTIMATE option to
on. For information about how estimation uses
filtering, see the frestimate reference page.

(Chirp input) Signal sweeps
through the frequency range too
quickly.

Increase the simulation time by increasing
NumSamples. See “Modifying Input Signals for
Estimation” on page 3-22.

After you try the suggested actions, recompute the estimation either:

• At all frequencies
• In a particular frequency range (only for sinestream input signals)

To recompute the estimation in a particular frequency range:

1 Determine the frequencies for which you want to recompute the estimation results.
Then, extract a portion of the sinestream input signal at these frequencies using
fselect.

For example, these commands extract a sinestream input signal between 10 and 20
rad/s from the input signal input:

input2 = fselect(input,10,20);

2 Modify the properties of the extracted sinestream input signal input2, as described
in “Modifying Input Signals for Estimation” on page 3-22.

3 Estimate the frequency response sysest2 with the modified input signal using
frestimate.
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4 Merge the original estimated frequency response sysest and the recomputed
estimated frequency response sysest2:

a Remove data from sysest at the frequencies in sysest2 using fdel. For
example:

sysest = fdel(sysest,input2.Frequency)

b Concatenate the original and recomputed responses using fcat. For example:

sys_combined = fcat(sysest2,sysest)

You can analyze the recomputed frequency response, as described in “Analyzing
Estimated Frequency Response” on page 3-36.

For an example of frequency response estimation with time-varying source blocks, see
“Effects of Time-Varying Source Blocks on Frequency Response Estimation” on page
3-56

FFT Contains Large Harmonics at Frequencies Other than the Input Signal
Frequency

What Does This Mean?

When the FFT plot shows large amplitudes at frequencies other than the input signal,
your model is operating outside the linear range. This condition can causes problems
when you want to analyze your linear system response to small perturbations.
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For models operating in the linear range, the input amplitude A1 in y(t) must be larger
than the amplitudes of other harmonics, A2 and A3.

model
u(t) y(t)
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y t A A A

( ) sin( )

( ) sin( ) sin( ) sin(

= +

= + + + + +
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How Do I Fix It?

Adjust the amplitude of your input signal to decrease the impact of other harmonics, and
repeat the estimation. Typically, you should decrease the input amplitude level to keep
the model operating in the linear range.
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For more information about modifying signal amplitudes, see one of the following:

• frest.Sinestream

• frest.Chirp

• “Modifying Input Signals for Estimation” on page 3-22

Time Response Grows Without Bound

What Does This Mean?

When the time response grows without bound, frequency response estimation results are
inaccurate. Frequency response estimation is only accurate close to the operating point.
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How Do I Fix It?

Try the suggested actions listed the table and repeat the estimation.

Possible Cause Action

Model is unstable. You cannot estimate the frequency response using
frestimate. Instead, use exact linearization to get
a linear representation of your model. See “Linearize
Simulink Model at Model Operating Point” on page
2-48 or the linearize reference page.

Stable model is not at steady
state.

Disable all source blocks in your model, and repeat
the estimation using a steady-state operating point.
See “Steady-State Operating Points (Trimming) from
Specifications”.

Stable model captures a
growing transient.

If the model captures a growing transient, increase
the number of periods in the input signal by changing
NumPeriods. Repeat the estimation using a steady-
state operating point.

Time Response Is Discontinuous or Zero

What Does This Mean?

Discontinuities or noise in the time response indicate that the amplitude of your input
signal is too small to overcome the effects of the discontinuous blocks in your model.
Examples of discontinuous blocks include Quantizer, Backlash, and Dead Zones.

If you used a sinestream input signal and estimated with filtering, turn filtering off in
the Simulation Results Viewer to see the unfiltered time response.

The following model with a Quantizer block shows an example of the impact of an input
signal that is too small. When you estimate this model, the unfiltered simulation output
includes discontinuities.
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How Do I Fix It?
Increase the amplitude of your input signal, and repeat the estimation.

With a larger amplitude, the unfiltered simulated output of the model with a Quantizer
block is smooth.
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For more information about modifying signal amplitudes, see one of the following:

• frest.Sinestream

• frest.Chirp

• “Modifying Input Signals for Estimation” on page 3-22

Time Response Is Noisy

What Does This Mean?

When the time response is noisy, frequency response estimation results may be biased.
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How Do I Fix It?

frestimate does not support estimating frequency response estimation of Simulink
models with blocks that model noise. Locate such blocks with frest.findSources and
disable them using the BlocksToHoldConstant option of frestimate.

If you need to estimate a model with noise, use frestimate to simulate an output signal
from your Simulink model for estimation—without modifying your model. Then, use
the Signal Processing Toolbox™ or System Identification Toolbox software to estimate a
model.

To simulate the output of your model in response to a specified input signal:

1 Create a random input signal. For example:

in = frest.Random('Ts',0.001,'NumSamples',1e4);

You can also specify your own custom signal as a timeseries object. For example:

t = 0:0.001:10;
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y = sin(2*pi*t);

in_ts = timeseries(y,t);

2 Simulate the model to obtain the output signal. For example:

[sysest,simout] = frestimate(model,op,io,in_ts)

The second output argument of frestimate, simout, is a Simulink.Timeseries
object that stores the simulated output. in_ts is the corresponding input data.

3 Generate timeseries objects before using with other MathWorks® products:

input = generateTimeseries(in_ts);

output = simout{1}.Data;

You can use data from timeseries objects directly in Signal Processing Toolbox
software, or convert these objects to System Identification Toolbox data format. For
examples, see “Estimating Frequency Response Models with Noise Using Signal
Processing Toolbox” on page 3-68 and “Estimating Frequency Response Models
with Noise Using System Identification Toolbox” on page 3-70.

For a related example, see “Effects of Noise on Frequency Response Estimation” on page
3-66.
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Effects of Time-Varying Source Blocks on Frequency Response
Estimation

Setting Time-Varying Sources to Constant for Estimation Using Linear
Analysis Tool

This example illustrates the effects of time-varying sources on estimation. The example
also shows how to set time-varying sources to be constant during estimation to improve
estimation results.

1 Open the Simulink model.

sys = 'scdspeed_ctrlloop';

open_system(sys);

2 Linearize the model.

a Set the Engine Model block to normal mode for accurate linearization.

set_param('scdspeed_ctrlloop/Engine Model','SimulationMode','Normal')

b Open the Linear Analysis Tool for the model.

In the Simulink Editor, select Analysis > Control Design > Linear Analysis.
c Select the visualization for the linearized model.

In the Plot Result list, select New Bode.
d

Click .

The linearized model, linsys1, appears in the Linear Analysis Workspace.
3 Create an input sinestream signal for the estimation.

a Open the Create sinestream input dialog box.

In the Frequency Response Estimation tab, select Sinestream in the Input
Signal list.

b Open the Add frequencies dialog box.

Click .



 Effects of Time-Varying Source Blocks on Frequency Response Estimation

3-57

c Specify the input sinestream frequency range and number of frequency points.

Enter 100 in the To box.

Enter 10 in the box for the number of frequency points.

Click OK.

The added points are visible in the Frequency content viewer of the Create
sinestream input dialog box.

d In the Frequency content viewer of the Create sinestream input dialog box,
select all the frequency points.

e Specify input sinestream parameters.

For this example, change the Number of periods and Settling periods to
ensure that the model reaches steady-state for each frequency point in the input
sinestream.
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Enter 30 in the Number of periods box.

Enter 25 in the Settling periods box.
f Create the input sinestream.

Click OK. The new input signal, in_sine1, appears in the Linear Analysis
Workspace.

4 Select the visualization for the estimated model.

In the Plot Result list of the Linear Analysis Tool, select Bode Plot 1.
5 Set the Diagnostic Viewer to open when estimation is performed.

Select the Launch Diagnostic Viewer check box.
6 Estimate the frequency response for the model.

Click . The frequency response estimation result, estsys1, appears in the
Linear Analysis Workspace.

7 Compare the estimated model and the linearized model.

a Click the Diagnostic Viewer - estsys1 tab in the plot pane of the Linear
Analysis Tool.

b Click and drag linsys1 onto the Diagnostic Viewer to add linsys1 to the
Diagnostic Viewer plots.

c Click the Figures tab of the Linear Analysis Tool.
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d Configure the Diagnostic Viewer to show only the frequency point where the
estimation and linearization results do not match.

In the Frequency Selector section, enter 9 in the From box and 11 in the To
box to set the frequency range that is analyzed in the Diagnostic Viewer.
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The Filtered Steady State Time Response plot depicts a signal that is not
sinusoidal.

e View the unfiltered time response.

Right-click the Filtered Steady State Time Response plot and clear the
Show filtered steady state output only option.
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The step input and external disturbances drive the model away from the
operating point that the linearized model uses. This prevents the response from
reaching steady-state. To correct this problem, find and disable the time-varying
source blocks that interfere with the estimation. Then estimate the frequency
response of the model again.

8 Find and disable the time-varying sources within the model.

a Open the Options for frequency response estimation dialog box.

On the Frequency Response Estimation tab, in the Generate Results
section, click Options.

b In the Time Varying Sources tab, click Find and add time varying source
blocks automatically.

This action populates the time varying sources list with the block paths of the
time varying sources in the model. These sources will be held constant during
estimation.
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9 Estimate the frequency response for the model.

Click . The frequency response estimation result for the model, estsys2,
appears in the Linear Analysis Workspace.

10 Compare the newly estimated model and the linearized model.

Click on the Diagnostic Viewer - estsys2 tab in the plot area of the Linear
Analysis Tool.

Click and drag linsys1 onto the Diagnostic Viewer to add linsys1 to the
Diagnostic Viewer plots.
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The frequency response obtained by holding the time-varying sources constant
matches the exact linearization results.

Setting Time-Varying Sources to Constant for Estimation (MATLAB Code)

Compare the linear model obtained using exact linearization techniques with the
estimated frequency response:
% Open the model

mdl = 'scdspeed_ctrlloop';

open_system(mdl)

io = getlinio(mdl);

% Set the model reference to normal mode for accurate linearization

set_param('scdspeed_ctrlloop/Engine Model','SimulationMode','Normal')

% Linearize the model

sys = linearize(mdl,io);

% Estimate the frequency response between 10 and 100 rad/s

in = frest.Sinestream('Frequency',logspace(1,2,10),'NumPeriods',30,'SettlingPeriods',25);

[sysest,simout] = frestimate(mdl,io,in);

% Compare the results

frest.simView(simout,in,sysest,sys)

The linearization results do not match the estimated frequency response for the first two
frequencies. To view the unfiltered time response, right-click the time response plot, and
uncheck Show filtered steady state output only.
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The step input and external disturbances drive the model away from the operating point,
preventing the response from reaching steady-state. To correct this problem, find and
disable these time-varying source blocks that interfere with the estimation.

Identify the time-varying source blocks using frest.findSources:

srcblks = frest.findSources(mdl,io);

Create a frestimate options set to disable the blocks.

opts = frestimateOptions;

opts.BlocksToHoldConstant = srcblks;

Repeat the frequency response estimation using the optional input argument opts.

[sysest2,simout2] = frestimate(mdl,io,in,opts);

frest.simView(simout2,in,sysest2,sys);

Now the resulting frequency response matches the exact linearization results. To view
the unfiltered time response, right-click the time response plot, and uncheck Show
filtered steady state output only.
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Effects of Noise on Frequency Response Estimation

Compare the linear model obtained using exact linearization techniques with the
estimated frequency response:

mdl = 'scdplane';

open_system(mdl)

io(1) = linio('scdplane/Sum1',1)

io(2) = linio('scdplane/Gain5',1,'output')

sys = linearize(mdl,io);

in = frest.Sinestream(sys);

[sysest,simout] = frestimate(mdl,io,in);

frest.simView(simout,in,sysest,sys)

The resulting frequency response does not match the linearization results due to the
effects of the Pilot and Wind Gust Disturbance blocks. To view the effects of effects of the
noise on the time response of the first frequency, right-click the time response plot and
make sure Show filtered steady state output only is selected.

Locate the source blocks:

srcblks = frest.findSources(mdl,io);
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Repeat the frequency response estimation with the source blocks disabled:

opts = frestimateOptions('BlocksToHoldConstant',srcblks);

[sysest,simout] = frestimate(mdl,io,in,opts);

frest.simView(simout,in,sysest,sys);

The resulting frequency response matches the exact linearization results.
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Estimating Frequency Response Models with Noise Using Signal
Processing Toolbox

Open the Simulink model, and specify which portion of the model to linearize:

load_system('magball');

io(1) = linio('magball/Desired Height',1);

io(2) = linio('magball/Magnetic Ball Plant',1,'output');

Create a random input signal for simulation:

in = frest.Random('Ts',0.001,'NumSamples',1e4);

Linearize the model at a steady-state operating point:

op = findop('magball',operspec('magball'),...

                      linoptions('DisplayReport','off'));

sys = linearize('magball',io,op);

Simulate the model to obtain the output at the linearization output point:

[sysest,simout] = frestimate('magball',io,in,op);

Estimate a frequency response model using Signal Processing Toolbox software, which
includes windowing and averaging:

input = generateTimeseries(in);

output = detrend(simout{1}.Data,'constant');

[Txy,F] = tfestimate(input.Data(:),...

          output,hanning(4000),[],4000,1/in.Ts);    

systfest = frd(Txy,2*pi*F);

Compare the results of analytical linearization and tfestimate:
ax=axes;

h = bodeplot(ax,sys,'b',systfest,'g',systfest.Frequency);

setoptions(h,'Xlim',[10,1000],'PhaseVisible','off');

legend(ax,'Linear model using LINEARIZE','Frequency response using Signal Processing Toolbox',...

   'Location','SouthWest')
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In this case, the Signal Processing Toolbox command tfestimate gives a more accurate
estimation than frestimate due to windowing and averaging.
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Estimating Frequency Response Models with Noise Using System
Identification Toolbox

Open the Simulink model, and specify which portion of the model to linearize:

load_system('magball');

io(1) = linio('magball/Desired Height',1);

io(2) = linio('magball/Magnetic Ball Plant',1,'output');

Compute the steady-state operating point, and linearize the model:

op = findop('magball',operspec('magball'),...

                      linoptions('DisplayReport','off'));

sys = linearize('magball',io,op);

Create a chirp signal, and use it to estimate the frequency response:

in = frest.Chirp('FreqRange',[1 1000],...

                             'Ts',0.001,...

                             'NumSamples',1e4);

[~,simout] = frestimate('magball',io,op,in);

Use System Identification Toolbox software to estimate a fifth-order, state-space model.
Compare the results of analytical linearization and the state-space model:

input = generateTimeseries(in);

output = simout{1}.Data;

data = iddata(output,input.Data(:),in.Ts);

sys_id = n4sid(detrend(data),5,'cov','none');

bodemag(sys,ss(sys_id('measured')),'r')

legend('Linear model obtained using LINEARIZE',...

       'State-space model using System Identification Toolbox',...

       'Location','SouthWest')
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Generate MATLAB Code for Repeated or Batch Frequency
Response Estimation

This topic shows how to generate MATLAB code for frequency response estimation from
the Linear Analysis Tool. You can generate either a MATLAB script or a MATLAB
function. Generated MATLAB scripts are useful when you want to programmatically
reproduce a result you obtained interactively. A generated MATLAB function allows you
to perform multiple estimations with systematic variations in estimation parameters
such as operating point (batch estimation).

To generate MATLAB code for estimation:

1 In Linear Analysis Tool, on the Frequency Response Estimation tab,
interactively configure the input signal, analysis I/Os, operating point, and other
parameters for frequency response estimation.

2 Click Estimate  to open the Generate Matlab Code menu.

3 Select the type of code you want to generate:

• Script with current values — Generate a MATLAB script that uses your
configured parameter values. Select this option when you want to repeat the
same frequency response estimation at the MATLAB command line.

• Function with input arguments — Generate a MATLAB function that
takes analysis I/Os, operating points, and input signals as input arguments.
Select this option when you want to perform multiple frequency response
estimations using different parameter values (batch estimation).
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To use a generated MATLAB function for batch estimation, you can create a MATLAB
script with a for loop that cycles through values of the parameter you want to vary. Call
the generated MATLAB function in each iteration of the loop.
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Managing Estimation Speed and Memory

In this section...

“Ways to Speed up Frequency Response Estimation” on page 3-74
“Speeding Up Estimation Using Parallel Computing” on page 3-76
“Managing Memory During Frequency Response Estimation” on page 3-79

Ways to Speed up Frequency Response Estimation

The most time consuming operation during frequency response estimation is the
simulation of your Simulink model. You can try to speed up the estimation using any of
the following ways:

• “Reducing Simulation Stop Time” on page 3-74
• “Specifying Accelerator Mode” on page 3-75
• “Using Parallel Computing” on page 3-75

Reducing Simulation Stop Time

The time it takes to perform frequency response estimation depends on the simulation
stop time.

To obtain the simulation stop time, select the input signal in the Linear Analysis
Workspace are of the Linear Analysis Tool. The simulation time will be displayed in the
Variable Preview.
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To obtain the simulation stop time from the input signal using MATLAB Code:

tfinal = getSimulationTime(input) 

where input is the input signal. The simulation stop time, tfinal, serves as an
indicator of the frequency response estimation duration.

You can reduce the simulation time by modifying your signal properties.

Input Signal Action Caution

Sinestream Decrease the number of periods
per frequency NumPeriods,
especially at lower frequencies.

You model must be at steady state
to achieve accurate frequency
response estimation. Reducing the
number of periods might not excite
your model long enough to reach
steady state.

Chirp Decrease the signal sample time
Ts or the number of samples
NumSamples.

The frequency resolution of the
estimated response depends on the
number of samples NumSamples.
Decreasing the number of samples
decreases the frequency resolution
of the estimated frequency response.

For information about modifying input signals, see “Modifying Input Signals for
Estimation” on page 3-22.

Specifying Accelerator Mode

You can try to speed up frequency response estimation by specifying the Rapid
Accelerator or Accelerator mode in Simulink.

For more information, see “What Is Acceleration?” in the Simulink documentation.

Using Parallel Computing

You can try to speed up frequency response estimation using parallel computing in the
following situations:

• Your model has multiple inputs.
• Your single-input model uses a sinestream input signal, where the sinestream

SimulationOrder property has the value 'OneAtATime'.
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For information on setting this option, see the frest.Sinestream reference page.

In these situations, frequency response estimation performs multiple simulations. If you
have installed the Parallel Computing Toolbox™ software, you can run these multiple
simulations in parallel on multiple MATLAB sessions (pool of MATLAB workers).

For more information about using parallel computing, see “Speeding Up Estimation
Using Parallel Computing” on page 3-76.

Speeding Up Estimation Using Parallel Computing

Configuring MATLAB for Parallel Computing

You can use parallel computing to speed up a frequency response estimation that
performs multiple simulations. You can use parallel computing with the Linear Analysis
Tool and frestimate. When you perform frequency response estimation using parallel
computing, the software uses the available parallel pool. If no parallel pool is available
and Automatically create a parallel pool is selected in your Parallel Computing
Toolbox preferences, then the software starts a parallel pool using the settings in those
preferences.

You can configure the software to automatically detect model dependencies and
temporarily add them to the parallel pool workers. However, to ensure that workers are
able to access the undetected file and path dependencies, create a cluster profile that
specifies the same. The parallel pool used to optimize the model must be associated with
this cluster profile. For information regarding creating a cluster profile, see “Create and
Modify Cluster Profiles” in the Parallel Computing Toolbox documentation.

To manually open a parallel pool that uses a specific cluster profile, use:

parpool(MyProfile);

MyProfile is the name of a cluster profile.

Estimating Frequency Response Using Parallel Computing Using Linear Analysis Tool

After you configure your parallel computing settings, as described in “Configuring
MATLAB for Parallel Computing” on page 3-76, you can estimate the frequency
response of a Simulink model using the Linear Analysis Tool.

1 In the Frequency Response Estimation tab of the Linear Analysis Tool, click
Options.
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This action opens the Options for frequency response estimation dialog box.
2 In the Parallel Options tab, select the Use the parallel pool during estimation

check box.

3 (Optional) Click Add path dependecy.

The Browse For Folder dialog box opens. Navigate and select the directory to add to
the model path dependencies.

Click OK.

Tip Alternatively, manually specify the paths in the Model path dependencies list.
You can specify the paths separated with a new line.

4 (Optional) Click Sync path dependencies from model.

This action finds the model path dependencies in your Simulink model and adds
them to the Model path dependencies list box.

Estimating Frequency Response Using Parallel Computing (MATLAB Code)

After you configure your parallel computing settings, as described in “Configuring
MATLAB for Parallel Computing” on page 3-76, you can estimate the frequency
response of a Simulink model.
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1 Find the paths to files that your Simulink model requires to run, called path
dependencies.

dirs = frest.findDepend(model)

dirs is a cell array of strings containing path dependencies, such as referenced
models, data files, and S-functions.

For more information about this command, see the frest.findDepend reference
page.

To learn more about model dependencies, see “What Are Model Dependencies?” and
“Scope of Dependency Analysis” in the Simulink documentation.

2 (Optional) Check that dirs includes all path dependencies. Append any missing
paths to dirs:

dirs = vertcat(dirs,'\\hostname\C$\matlab\work')

3 (Optional) Check that all workers have access to the paths in dirs.

If any of the paths resides on your local drive, specify that all workers can access
your local drive. For example, this command converts all references to the C drive to
an equivalent network address that is accessible to all workers:

dirs = regexprep(dirs,'C:/','\\\\hostname\\C$\\')

4 Enable parallel computing and specify model path dependencies by creating an
options object using the frestimateOptions command:

options = frestimateOptions('UseParallel','on','ParallelPathDependencies',dirs)

Tip To enable parallel computing for all estimations, select the global preference Use
the parallel pool when you use the "frestimate" command check box in the
MATLAB preferences. If your model has path dependencies, you must create your
own frequency response options object that specifies the path dependencies before
beginning estimation.

5 Estimate the frequency response:

[sysest,simout] = frestimate('model',io,input,options)

For an example of using parallel computing to speed up estimation, see Speeding Up
Frequency Response Estimation Using Parallel Computing.
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Managing Memory During Frequency Response Estimation

Frequency response estimation terminates when the simulation data exceed available
memory. Insufficient memory occurs in the following situations:

• Your model performs data logging during a long simulation. A sinestream input
signal with four periods at a frequency of 1e-3 rad/s runs a Simulink simulation
for 25,000 s. If you are logging signals using To Workspace blocks, this length of
simulation time might cause memory problems.

• A model with an output point discrete sample time of 1e-8 s that simulates at 5-Hz

frequency (0.2 s of simulation per period), results in 0 2

1 8
2

.

e -

=  million samples of data

per period. Typically, this amount of data requires over 300 MB of storage.

To avoid memory issues while estimating frequency response:

1 Disable any signal logging in your Simulink model.

To learn how you can identify which model components log signals and disable signal
logging, see “Signal Logging”.

2 Try one or more of the actions listed in the following sections:

• “Model-Specific Ways to Avoid Memory Issues” on page 3-79
• “Input-Signal-Specific Ways to Avoid Memory Issues” on page 3-80

3 Repeat the estimation.

Model-Specific Ways to Avoid Memory Issues

To avoid memory issues, try one or more of the actions listed in the following table, as
appropriate for your model type.

Model Type Action

Models with fast discrete sample time
specified at output point

Insert a Rate Transition block at the output
point to lower the sample rate, which
decreases the amount of logged data. Move
the linearization output point to the output
of the Rate Transition block before you
estimate. Ensure that the location of the
original output point does not have aliasing
as a result of rate conversion.
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Model Type Action

Original location
of output point

New location
of output point

For information on determining sample
rate, see “View Sample Time Information”.
If your estimation is slow, see “Ways to
Speed up Frequency Response Estimation”
on page 3-74.

Models with multiple input and output
points (MIMO models)

• Estimate the response for all input/
output combinations separately. Then,
combine the results into one MIMO
model using the data format described in
“Frequency-Response Model”.

• Use parallel computing to run the
independent simulations in parallel on
different computers. See “Speeding Up
Estimation Using Parallel Computing”
on page 3-76.

Input-Signal-Specific Ways to Avoid Memory Issues

To avoid memory issues, try one or more of the actions listed in the following table, as
appropriate for your input signal type.

Input Signal Type Action

Sinestream • Remove low frequencies from your input
signal for which you do not need the
frequency response.

• Modify the sinestream signal to
estimate each frequency separately by
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Input Signal Type Action

setting the SimulationOrder option
to OneAtATime. Then estimate using
a frestimate syntax that does not
request the simulated time-response
output data, for example sysest =
frestimate(model,io,input).

• Use parallel computing to run
independent simulations in parallel on
different computers. See “Speeding Up
Estimation Using Parallel Computing”
on page 3-76.

• Divide the input signal into multiple
signals using fselect. Estimate the
frequency response for each signal
separately using frestimate. Then,
combine results using fcat.

Chirp Create separate input signals that divide
up the swept frequency range of the
original signal into smaller sections using
frest.Chirp. Estimate the frequency
response for each signal separately using
frestimate. Then, combine results using
fcat.

Random Decrease the number of samples in
the random input signal by changing
NumSamples before estimating. See “Time
Response Is Noisy” on page 3-53.
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Choosing a Control Design Approach

Simulink Control Design provides several approaches to tuning Simulink blocks, such as
Transfer function and PID Controller blocks:

• “PID Controller Tuning” lets you automatically tune feedback loops containing PID
Controller or PID Controller 2DOF blocks.

• Use automated tuning or graphical design approaches to tune SISO feedback loops
containing any tunable linear blocks. See “SISO Loop Tuning”.

• If you have Robust Control Toolbox software, you can tune Simulink models of control
systems having any structure to meet design requirements you specify. See “Control
System Tuning”.

Use the following table to determine which approach best supports what you want to do.

 PID Tuning SISO Loop Tuning Control System Tuning
(requires Robust
Control Toolbox
software)

Supported Blocks PID Controller
PID Controller
2DOF

Linear blocks Any blocks;
only some are
automatically
parameterized
(See “How Tuned
Simulink Blocks
Are Parameterized”
in the Robust
Control Toolbox
documentation)

Loop Structure PID loops with unit
feedback

Control systems
having one or more
SISO feedback loops

Any structure,
including SISO or
MIMO feedback
loops

Control Design
Approach

Simple automatic
PID gain tuning by
specifying system
response time and
transient response

Graphically tune
poles and zeros on
design plots, such as
Bode, root locus, and
Nichols

Automatic tuning
to meet design
requirements you
specify, such as
setpoint tracking,
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 PID Tuning SISO Loop Tuning Control System Tuning
(requires Robust
Control Toolbox
software)

Use a PID, LQG,
IMC, Robust Control
Loop Shaping, and
Simulink Design
Optimization
automated tuning
method

stability margins,
disturbance
rejection, and loop
shaping

Analysis of
Control System
Performance

Time and frequency
response for
reference tracking
and disturbance
rejection

Any combination of
responses for any
input reference or
disturbance in your
Simulink model

Any combination of
system responses

Interface Graphical interface
of PID Tuner

Graphical interface
of Control System
Designer and LTI
Viewer

• Graphical
interface using
Control System
Tuner

• Programmatic
interface using
slTuner

Related Links

• “PID Controller Tuning”
• “SISO Loop Tuning”
• “Control System Tuning”
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Introduction to Automatic PID Tuning

You can use the Simulink Control Design PID Tuner to tune PID gains automatically
in a Simulink model containing a PID Controller or PID Controller (2DOF) block. The
PID Tuner allows you to achieve a good balance between performance and robustness for
either one- or two-degree-of-freedom PID controllers.

The PID Tuner:

• Automatically computes a linear model of the plant in your model. The PID Tuner
considers the plant to be the combination of all blocks between the PID controller
output and input. Thus, the plant includes all blocks in the control loop, other than
the controller itself. See “What Plant Does the PID Tuner See?” on page 4-5.

• Automatically computes an initial PID design with a balance between performance
and robustness. The PID Tuner bases the initial design upon the open-loop frequency
response of the linearized plant. See “PID Tuning Algorithm” on page 4-6.

• Provides the PID Tuner GUI to help you interactively refine the performance of the
PID controller to meet your design requirements. See “Open the PID Tuner” on page
4-7.

You can use the PID Tuner to design one- or two-degree-of-freedom PID controllers. You
can often achieve both good setpoint tracking and good disturbance rejection using a one-
degree-of-freedom PID controller. However, depending upon the dynamics in your model,
using a one-degree-of-freedom PID controller can require a trade-off between setpoint
tracking and disturbance rejection. In such cases, if you need both good setpoint tracking
and good disturbance rejection, use a two-degree-of-freedom PID Controller.

For examples of tuning one- and two-degree-of-freedom PID compensators, see:

• “PID Controller Tuning in Simulink”
• “Tune PID Controller to Balance Tracking and Disturbance Rejection Performance”

on page 4-21
• “Designing a Simulink PID Controller (2DOF) Block for a Reactor” on page 4-72
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What Plant Does the PID Tuner See?

The PID Tuner considers as the plant all blocks in the loop between the PID Controller
block output and input. The blocks in your plant can include nonlinearities. Because
automatic tuning requires a linear model, the PID Tuner computes a linearized
approximation of the plant in your model. This linearized model is an approximation to
a nonlinear system, which is generally valid in a small region around a given operating
point of the system.

By default, the PID Tuner linearizes your plant using the initial conditions specified in
your Simulink model as the operating point. The linearized plant can be of any order and
can include any time delays. The PID tuner designs a controller for the linearized plant.

In some circumstances, however, you want to design a PID controller for a different
operating point from the one defined by the model initial conditions. For example:

• The Simulink model has not yet reached steady-state at the operating point specified
by the model initial conditions, and you want to design a controller for steady-state
operation.

• You are designing multiple controllers for a gain-scheduling application and must
design each controller for a different operating point.

In such cases, change the operating point used by the PID Tuner. See “Opening the
Tuner” on page 4-7.

For more information about linearization, see “Linearizing Nonlinear Models” on page
2-3.
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PID Tuning Algorithm

Typical PID tuning objectives include:

• Closed-loop stability — The closed-loop system output remains bounded for bounded
input.

• Adequate performance — The closed-loop system tracks reference changes and
suppresses disturbances as rapidly as possible. The larger the loop bandwidth (the
frequency of unity open-loop gain), the faster the controller responds to changes in the
reference or disturbances in the loop.

• Adequate robustness — The loop design has enough gain margin and phase margin to
allow for modeling errors or variations in system dynamics.

MathWorks algorithm for tuning PID controllers meets these objectives by tuning the
PID gains to achieve a good balance between performance and robustness. The algorithm
designs an initial controller by choosing a bandwidth to achieve that balance, based
upon the open-loop frequency response of your linearized model. When you interactively
change the response time, bandwidth, transient response, or phase margin using the PID
Tuner interface, the algorithm computes new PID gains.
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Open the PID Tuner

In this section...

“Prerequisites for PID Tuning” on page 4-7
“Opening the Tuner” on page 4-7

Prerequisites for PID Tuning

Before you can use the PID Tuner, you must:

• Create a Simulink model containing a PID Controller or PID Controller (2DOF) block.
Your model can have one or more PID blocks, but you can only tune one PID block at
a time.

• If you are tuning a multi-loop control system with coupling between the loops,
consider using other Simulink Control Design tools instead of the PID Tuner.
See “Design and Analysis of Control Systems” and Cascaded Multi-Loop/Multi-
Compensator Feedback Design for more information.

• The PID Controller blocks support vector signals. However, using the PID Tuner
requires scalar signals at the block inputs. That is, the PID block must represent a
single PID controller.

Your plant (all blocks in the control loop other than the controller) can be linear or
nonlinear. The plant can also be of any order, and have any time delays.

• Configure the PID block settings, such as controller type, controller form, time
domain, sample time. See the PID Controller or PID Controller (2DOF) block
reference pages for more information about configuring these settings.

Opening the Tuner

To open the PID Tuner and view the initial compensator design:

1 Open the Simulink model by typing the model name at the MATLAB command
prompt.

2 Double-click the PID Controller block to open the block dialog box.
3 In the block dialog box, click Tune to launch the PID Tuner.
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When you open the PID Tuner, the following actions occur:

• The PID Tuner automatically linearizes the plant at the operating point specified by
the model initial conditions, as described in “What Plant Does the PID Tuner See?” on
page 4-5. If you want to design a controller for a different operating point, see “Tune
at a Different Operating Point” on page 4-17.

Note: If the plant model in the PID loop linearizes to zero, the PID Tuner provides
the Obtain plant model dialog box. This dialog box allows you to obtain a new plant
model by either:

• Linearizing at a different operating point (see “Tune at a Different Operating
Point” on page 4-17).

• Importing an LTI model object representing the plant. For example, you can
import frequency response data (an frd model) obtained by frequency response
estimation. For more information, see “Designing PID Controller in Simulink
with Estimated Frequency Response”.

• The PID Tuner computes an initial compensator design for the linearized plant model
using the algorithm described in “PID Tuning Algorithm” on page 4-6.

• The PID Tuner displays the closed-loop step reference tracking response for the initial
compensator design in the PID Tuner dialog box. For comparison, the display also
includes the closed-loop response for the gains specified in the PID Controller block, if
that closed loop is stable, as shown in the following figure.
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Tip After the tuner opens, you can close the PID Controller block dialog box.
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Analyze Design in PID Tuner

In this section...

“Plot System Responses” on page 4-10
“View Numeric Values of System Characteristics” on page 4-12
“Export Plant or Controller to MATLAB Workspace” on page 4-13
“Refine the Design” on page 4-14

Plot System Responses

To determine whether the compensator design meets your requirements, you can analyze
the system response using the response plots. In the PID Tuner tab, select a response
plot from the Add Plot menu. The Add Plot menu also lets you choose from several step
plots (time-domain response) or Bode plots (frequency-domain response).
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The PID Tuner computes the responses based upon the following single-loop control
architecture:

PID
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The following table summarizes the available responses.
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Response Plotted System Description

Plant G Shows the plant response. Use
to examine plant dynamics.

Open-loop CG Shows response of the open-loop
controller-plant system. Use for
frequency-domain design.
Use when your design
specifications include robustness
criteria such as open-loop gain
margin and phase margin.

Reference tracking CG

CG1 +

 (from r to y)
Shows the closed-loop system
response to a step change in
setpoint. Use when your design
specifications include setpoint
tracking.

Controller effort C

CG1 +

 (from r to u)
Shows the closed-loop controller
output response to a step change
in setpoint. Use when your
design is limited by practical
constraints, such as controller
saturation.

Input disturbance

rejection
G

CG1 +

 (from d1 to y)
Shows the closed-loop system
response to load disturbance (a
step disturbance at the plant
input). Use when your design
specifications include input
disturbance rejection.

Output disturbance

rejection
1

1 + CG
 (from d2 to y)

Shows the closed-loop system
response to a step disturbance
at plant output. Use when you
want to analyze sensitivity to
measurement noise.

View Numeric Values of System Characteristics

You can view the values for system characteristics, such as peak response and gain
margin, either:



 Analyze Design in PID Tuner

4-13

• Directly on the response plot — Use the right-click menu to add characteristics, which
appear as blue markers. Then, left-click the marker to display the corresponding data
panel.

• In the Performance and robustness table — To display this table, click Show
Parameters.

Export Plant or Controller to MATLAB Workspace

You can export the linearized plant model computed by PID Tuner to the MATLAB
workspace for further analysis. To do so, click Update Block and select Export.
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In the Export dialog box, check the models you want to export. Click OK to export the
plant or controller to the MATLAB workspace as state-space (ss) model object or pid
object, respectively.

Refine the Design

If the response of the initial controller design does not meet your requirements, you
can interactively adjust the design. The PID Tuner gives you two Domain options for
refining the controller design:

• Time domain (default) — Use the Response Time slider to make the closed-loop
response of the control system faster or slower. Use the Transient Behavior slider
to make the controller more aggressive at disturbance rejection or more robust
against plant uncertainty.

• Frequency — Use the Bandwidth slider to make the closed-loop response of the
control system faster or slower (the response time is 2/wc, where wc is the bandwidth).
Use the Phase Margin slider to make the controller more aggressive at disturbance
rejection or more robust against plant uncertainty.

In both modes, there is a trade-off between reference tracking and disturbance rejection
performance. For an example that shows how to use the sliders to adjust this trade-off,
see “Tune PID Controller to Balance Tracking and Disturbance Rejection Performance”
on page 4-21.
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Once you find a compensator design that meets your requirements, verify that it behaves
in a similar way in the nonlinear Simulink model. For instructions, see “Verify the PID
Design in Your Simulink Model” on page 4-16.

Tip To revert to the initial controller design after moving the sliders, click  Reset
Design.
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Verify the PID Design in Your Simulink Model

In the PID Tuner, you tune the compensator using a linear model of your plant. First,
you find a good compensator design in the PID Tuner. Then, verify that the tuned
controller meets your design requirements when applied to the nonlinear plant in your
Simulink model.

To verify the compensator design in the nonlinear Simulink model:

1
In the PID Tuner tab, click  to update the Simulink PID Controller block with
the tuned PID parameters.

Tip To update PID block parameters automatically as you tune the controller in the
PID Tuner, click Update Block and check Auto-update block.

2 Simulate the Simulink model, and evaluate whether the simulation output meets
your design requirements.

Because the PID Tuner works with a linear model of your plant, the simulated response
sometimes does not match the response in the PID Tuner. See “Simulated Response Does
Not Match the PID Tuner Response” on page 4-67 for more information.

If the simulated response does not meet your design requirements, see “Cannot Find an
Acceptable PID Design in the Simulated Model” on page 4-69.
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Tune at a Different Operating Point

By default, the PID Tuner linearizes your plant and designs a controller at the operating
point specified by the initial conditions in your Simulink model. In some cases, this
operating point can differ from the operating point you want to design a controller for.
For example, you want to design a controller for your system at steady-state. However,
the Simulink model is not generally at steady-state at the initial condition. In this
case, change the operating point that the PID Tuner uses for linearizing your plant and
designing a controller.

To set a new operating point for the PID Tuner, use one of the following methods. The
method you choose depends upon the information you have about your desired operating
point

In this section...

“Known State Values Yield the Desired Operating Conditions” on page 4-17
“Your Model Reaches Desired Operating Conditions at a Finite Time” on page 4-17
“You Computed an Operating Point in the Linear Analysis Tool” on page 4-18

Known State Values Yield the Desired Operating Conditions

In this case, set the state values in the model directly.

1 Close the PID Tuner.
2 Set the initial conditions of the components of your model to the values that yield the

desired operating conditions.
3 Click Tune in the PID Controller dialog box to launch the PID Tuner. The PID

Tuner linearizes the plant using the new default operating point and designs a new
initial controller for the new linear plant model.

After the PID Tuner generates a new initial controller design, continue from “Analyze
Design in PID Tuner” on page 4-10.

Your Model Reaches Desired Operating Conditions at a Finite Time

In this case, use PID Tuner to relinearize the model at a particular simulation time.
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1 In the PID Tuner tab, in the Plant menu, select Re-linearize Closed Loop.
2

In the Closed Loop Re-Linearization tab, click  Run Simulation to simulate
the model for the time specified in the Simulation Time text box.

PID Tuner plots the error signal as a function of time. You can use this plot to
identify a time at which the model is in steady-state. Slide the vertical bar to a
snapshot time at which you wish to linearize the model.

3
Click  Linearize to linearize the model at the selected snapshot time. PID Tuner
computes a new linearized plant and saves it to the PID Tuner workspace. PID
Tuner automatically designs a controller for the new plant, and displays a response
plot for the new closed-loop system. PID Tuner returns you PID Tuner tab, where
the Plant menu reflects that the new plant is selected for the current controller
design.

Note: For models with Trigger-Based Operating Point Snapshot blocks, the software
captures an operating point at events that trigger before the simulation reaches the
snapshot time.

After the PID Tuner generates a new initial controller design, continue from “Analyze
Design in PID Tuner” on page 4-10.

You Computed an Operating Point in the Linear Analysis Tool

1 In the Linear Analysis tool, drag the saved operating point object from the Linear
Analysis Workspace to the MATLAB Workspace.
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2 In the PID Tuner, in the PID Tuner tab, in the Plant menu, select Import.
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3 Select Importing an LTI system or linearizing at an operating point defined
in MATLAB workspace. Select your exported operating point in the table.

4 Click OK. PID Tuner computes a new linearized plant and saves it to the PID Tuner
workspace. PID Tuner automatically designs a controller for the new plant, and
displays a response plot for the new closed-loop system. PID Tuner returns you PID
Tuner tab, where the Plant menu reflects that the new plant is selected for the
current controller design.

After the PID Tuner generates a new initial controller design, continue from “Analyze
Design in PID Tuner” on page 4-10.

More About
• “What Is a Steady-State Operating Point?”
• “Choosing Between Simulation Snapshot and Operating Point from Specifications”
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Tune PID Controller to Balance Tracking and Disturbance Rejection
Performance

This example shows how to tune a PID controller to reduce overshoot in reference
tracking or to improve rejection of a disturbance at the plant input. Using the PID
Tuner, the example illustrates the trade-off between reference tracking and disturbance
rejection performance.

1 Load a Simulink model that contains a PID Controller block.

open_system('singlePIloop')

The plant has poles at s = –1, s = –0.2, and s = –0.05. The model also includes a
reference signal and a step disturbance a the plant input.

Setpoint tracking is the response at y to the reference signal, r. Disturbance
rejection is a measure of the suppression at y of the injected disturbance, d.

2 Double-click the PID Controller block to open the Block Parameters dialog box.
3 Click Tune to open the PID Tuner, which designs an initial controller for the plant.
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The initial controller design has some overshoot in the reference tracking response.
4 Right-click in the plot area, and select Characteristics > Peak Response. A blue

dot appears at the point of maximum overshoot. Click the blue dot to display peak
response data in a tool tip.
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The tool tip shows that the overshoot is 8.45%. If this overshoot is too much for your
application, you can reduce it using the Transient behavior slider.

5 Move the Transient behavior slider to the right until the overshoot is less than
0.2%.
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Increasing controller robustness also reduces overshoot, so moving the Transient
behavior slider to the right improves this measure of controller performance.
However, for a given controller bandwidth (or response time), there is a trade-off
between reducing reference tracking overshoot and optimizing disturbance rejection.

6 Examine the effect of the overshoot reduction on the disturbance rejection
performance. Click Add Plot. In the Step section of the Add Plot menu, select
Input disturbance rejection. The disturbance rejection response appears in a
new figure.
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Tip Use the options in the View tab to change how PID Tuner displays multiple
plots.

7 Right-click in the plot area, and select Characteristics > Settling Time. Click the
blue dot to display the settling time tool tip.

The current controller design minimizes reference tracking overshoot. However, it
responds sluggishly to a disturbance at the plant input, taking over two minutes to
settle. You can use the Transient behavior slider to make the disturbance rejection
more aggressive without changing the controller bandwidth.

8 Move the Transient behavior slider to the left until the disturbance response
settles in under 60 seconds.
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9 Examine the Reference tracking plot to see the effect of more aggressive
transient behavior on the reference tracking overshoot.

Optimizing the disturbance rejection response for the given bandwidth increases the
reference tracking overshoot to 12.6%.
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The PID Tuner selects an initial controller design that balances this trade-off.
The initial controller design has less reference tracking overshoot than the design
optimized for disturbance rejection. Likewise, it has somewhat faster disturbance
rejection than the design optimized to reduce overshoot. You can use the Transient
behavior slider to adjust this balance as needed to suit your application.

To obtain independent control over reference tracking and disturbance rejection, you
can use a two-degree-of-freedom controller (PID Controller (2DOF) block) instead of
a single degree-of-freedom controller.

Related Examples
• “Analyze Design in PID Tuner” on page 4-10
• “Verify the PID Design in Your Simulink Model” on page 4-16
• “Design Two-Degree-of-Freedom PID Controllers” on page 4-29
• “Tune at a Different Operating Point” on page 4-17
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Design Two-Degree-of-Freedom PID Controllers

Use the PID Tuner to tune two-degree-of-freedom PID Controller (2DOF) blocks to
achieve both good setpoint tracking and good disturbance rejection.

About Two-Degree-of-Freedom PID Controllers

A two-degree-of-freedom PID compensator, commonly known as an ISA-PID
compensator, is equivalent to a feedforward compensator and a feedback compensator, as
shown in the following figure.

The feedforward compensator is PD and the feedback compensator is PID. In the
PID Controller (2DOF) block, the setpoint weights b and c determine the strength of
the proportional and derivative action in the feedforward compensator. See the PID
Controller (2DOF) block reference page for more information.

Tuning Two-Degree-of-Freedom PID Controllers

The PID Tuner tunes the PID gains P, I, D, and N. The tuner does not automatically tune
the setpoint weights b and c. However, you can use the PID Tuner to tune a two-degree-
of-freedom PID controller by the following process:

1 Use the PID Tuner to tune the PID gains P, I, D, and N to meet your disturbance
rejection requirement.

To tune this portion of the compensator, follow the procedure for tuning a one-
degree-of-freedom PID compensator, as described in “Analyze Design in PID Tuner”
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on page 4-10. and “Refine the Design” on page 4-14. Focus on the disturbance
rejection plot to make sure that the tuned controller meets your disturbance rejection
requirements.

2 After you have tuned the PID gains P, I, D, and N, update the PID Controller (2DOF)

block with the tuned parameters. In the PID Tuner tab, click  to update the
Simulink PID Controller block with the tuned PID parameters.

Tip To update PID block parameters automatically as you tune the controller in the
PID Tuner, click Update Block and check Auto-update block.

3 Adjust the setpoint weights b and c of the feedforward portion of the compensator to
meet your setpoint tracking requirements as follows:

In the PID Controller (2DOF) block dialog box, enter values for the setpoint weights
b and c between 0 and 1.

To reduce undesirable controller response to sudden changes in the reference signal
(derivative kick), set c to 0. Typically, give b a value in the range 0-1. Smaller b
values generally result in slower reference tracking. However, b and c values do not
affect loop stability or disturbance rejection.

4 Evaluate whether the compensator design meets your design requirements by
viewing a simulation of the Simulink mode as described in “Verify the PID Design in
Your Simulink Model” on page 4-16.
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Related Examples
• “Analyze Design in PID Tuner” on page 4-10
• “Specify PI-D and I-PD Controllers” on page 4-34
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Tune PID Controller Within Model Reference

This example shows how to tune a PID controller block contained in a referenced model.

When you launch the PID Tuner from a PID controller block in a model that is referenced
in one or more open models, the software prompts you to specify which open model is the
top-level model for linearization and tuning. The referenced model must be in normal
mode.

For more information about model referencing, see “Overview of Model Referencing” in
the Simulink documentation.

1 Open the model.

open('model_ref_pid');

The block Inner Loop is a referenced model that contains the PID Controller block
to tune.

2 Double-click Inner Loop to open the referenced model.

The referenced model innerloop contains a PID controller block, PID.
3 Double-click the PID controller block PID to open the block dialog box.
4 Click Tune in the block dialog box.

The software prompts you to select which open model is the top-level model for
linearization and tuning.
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Note: The software only identifies open models containing the model reference. The
PID Tuner does not detect models that contain the model reference but are not open.

Selecting innerloop causes the PID Tuner to disregard model_ref_pid. Instead,
the PID Tuner tunes the PID Controller block for the plant G_Inner alone, as if
there were no outer loop.

Alternatively, you can select model_ref_pid as the top-level model. When you do
so, the PID Tuner considers the dynamics of both the inner and outer loops, and
tunes with both loops closed. In this case, PID controller sees the effective plant
(1+G_Outer*Gain)*G_Inner.

5 Select the desired top-level model, and click OK.

The PID Tuner linearizes the selected model and launches. Proceed with analyzing
and adjusting the tuned response as described in “Open the PID Tuner” on page 4-7.
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Specify PI-D and I-PD Controllers

In this section...

“About PI-D and I-PD Controllers” on page 4-34
“Specify PI-D and I-PD Controllers Using PID Controller (2DOF) Block” on page
4-36

About PI-D and I-PD Controllers

PI-D and I-PD controllers are used to mitigate the influence of changes in the reference
signal on the control signal. These controllers are variants of the 2DOF PID controller.

The general formula of a parallel-form 2DOF PID controller is:
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Here, r and y are the reference input and measured output, respectively. u is the
controller output, also called the control signal. P, I, and D specify the proportional,
integral, and derivative gains, respectively. N specifies the derivative filter coefficient.
b and c specify setpoint weights for the proportional and derivative components,
respectively. For a 1DOF PID, b and c are equal to 1.

If r is nonsmooth or discontinuous, the derivative and proportional components can
contribute large spikes or offsets in u, which can be infeasible. For example, a step input
can lead to a large spike in u because of the derivative component. For a motor actuator,
such an aggressive control signal could damage the motor.

To mitigate the influence of r on u, set b or c, or both, to 0. Use one of the following
setpoint-weight-based forms:

• PI-D (b = 1 and c = 0) — Derivative component does not directly propagate changes in
r to u, whereas the proportional component does. However, the derivative component,
which has a greater impact, is suppressed. Also referred to as the derivative of output
controller.

The general formula for this controller form is:
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• I-PD (b = 0 and c = 0) — Proportional and derivative components do not directly
propagate changes in r to u.

The general formula for this controller form is:
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The following plot shows u for different PID forms for a step reference. The 1DOF PID
controller results in a large spike when the reference changes from 0 to 1. The PI-D
form results in a smaller jump. In contrast, the I-PD form does not react as much to the
change in r.
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You can tune the P, I, D, and N coefficients of a PI-D or I-PD controller to achieve the
desired disturbance rejection and reference tracking.

Specify PI-D and I-PD Controllers Using PID Controller (2DOF) Block

To specify a PI-D or I-PD Controller using the PID Controller (2DOF) block, open the
block dialog.

• For a PI-D controller, enter 1 in the Setpoint weight (b) box, and 0 in the Setpoint
weight (c) box.

• For an I-PD controller, enter 0 in the Setpoint weight (b) box, and 0 in the
Setpoint weight (c) box.
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Suppose you specify values for b and c, and click Tune to tune the other coefficients. The
PID Tuner does not tune the values of b and c. That is, the PID Tuner preserves the b
and c values, while tuning the values of the other coefficients to meet the specified design
goals.

For an example of specifying the PI-D and I-PD controller forms, type
ex_scd_pid2dof_setpoint_based_controllers. This opens a model that compares
the performance of a 1DOF PID, a PI-D, and an I-PD controller.

See Also
PID Controller | PID Controller (2 DOF)

Related Examples
• “Tune PID Controller to Balance Tracking and Disturbance Rejection Performance”
• “Design Two-Degree-of-Freedom PID Controllers” on page 4-29
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Import Measured Response Data for Plant Estimation

This example shows how to use PID Tuner to import measured response data for plant
estimation.

If you have System Identification Toolbox software, you can use the PID Tuner to
estimate the parameters of a linear plant model based on time-domain response data.
PID Tuner then tunes a PID controller for the resulting estimated model. The response
data can be either measured from your real-world system, or obtained by simulating your
Simulink model. Plant estimation is especially useful when your Simulink model cannot
be linearized.

When you import response data, PID Tuner assumes that your measured data represents
a plant connected to the PID controller in a negative-feedback loop. In other words, PID
Tuner assumes the following structure for your system. PID Tuner assumes that you
injected an input signal at u and measured the system response at y, as shown.

You can import response data stored in the MATLAB workspace as a numeric array, a
timeseries object, or an iddata object. To import response data:

1 In the PID Tuner, in the PID Tuner tab, in the Plant menu, select Identify New
Plant.
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2
In the Plant Identification tab, click  Get I/O data. Select the type of
measured response data you have. For example, if you measured the response of
your plant to a step input, select Step Response. To import the response of your
system to an arbitrary stimulus, select Arbitrary I/O Data.

3 In the Import Response dialog box, enter information about your response data. For
example, for step-response data stored in a variable outputy and sampled every
0.1s:
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Click  Import. The Plant Identification tab opens, displaying the response
data and the response of an initial estimated plant.
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4 Depending on the quality and features of your response data, you might want to
perform some preprocessing on the data to improve the estimated plant results. The
Preprocess menu gives you several options for preprocessing response data, such
as removing offsets, filtering, or extracting on a subset of the data. In particular,
when the response data has an offset, it is important for good identification results to
remove the offset.

In the Plant Identification tab, click Preprocess and select the
preprocessing option you want to use. A tab opens with a figure that displays the
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original and preprocessed data. Use the options in the tab to specify preprocessing
parameters.

When you are satisfied with the preprocessed signal, click  Update to save the

change to the signal. Click  to return to the Plant Identification tab.

PID Tuner automatically adjusts the plant parameters to create a new initial guess
for the plant based on the preprocessed response signal.

You can now adjust the structure and parameters of the estimated plant to obtain the
estimated linear plant model for PID Tuning. See “Interactively Estimate Plant from
Measured or Simulated Response Data” on page 4-43 for more information.
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Interactively Estimate Plant from Measured or Simulated Response
Data

This example shows how to use PID Tuner to fit a linear model to SISO response data.

If you have System Identification Toolbox software, you can use the PID Tuner to
estimate the parameters of a linear plant model based on time-domain response data.
PID Tuner then tunes a PID controller for the resulting estimated model. The response
data can be either measured from your real-world system, or obtained by simulating your
Simulink model. Plant estimation is especially useful when your Simulink model cannot
be linearized.

PID Tuner gives you several techniques to graphically, manually, or automatically adjust
the estimated model to match your response data. This topic illustrates some of those
techniques.

Obtain Response Data for Identification

In the PID Tuner, in the PID Tuner tab, in the Plant menu, select Identify New
Plant.
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In the Plant Identification tab, click  Get I/O data. This menu allows you to obtain
system response data in one of two ways:

• Simulate Data. Obtain system response data by simulate the response of your
Simulink model to an input signal. For an example showing how to obtain response
data by simulation, see Design a PID Controller Using Simulated I/O Data.

• Import I/O Data. Import measured system response data as described in “Import
Measured Response Data for Plant Estimation” on page 4-38.

Once you have imported or simulated data, the Plant Identification tab displays the
response data and the response of an initial estimated plant. You can now select the
plant structure and adjust the estimated plant parameters until the response of the
estimated plant is a good fit to the response data.

../examples/design-a-pid-controller-using-simulated-i-o-data.html
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Adjust Plant Structure and Parameters

PID Tuner allows you to specify a plant structure, such as One Pole, Two Real Poles,
or State-Space Model. In the Structure menu, choose the plant structure that best
matches your response. You can also add a transfer delay, a zero, or an integrator to your
plant.

In the following sample plot, the one-pole structure gives the qualitatively correct
response. You can make further adjustments to the plant structure and parameter values
to make the estimated system’s response a better match to the measured response data.
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PID Tuner gives you several ways to adjust the plant parameters:

• Graphically adjust the estimated system’s response by dragging the adjustors on the
plot. For example, for a one-pole structure, drag the red x to adjust the estimated
plant time constant. PID Tuner recalculates system parameters as you do so. In
the following sample plot, it is apparent that there is some time delay between the
application of the step input (at t = 5 s), and the response of the system to that step
input.
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In the Plant Structure section of the tab, check Delay to add a transport delay to
the estimated plant model. A vertical line appears on the plot, indicating the current
value of the delay. Drag the line left or right to change the delay, and make further
adjustments to the system response by dragging the red x.

• Adjust the numerical values of system parameters such as gains, time constants, and

time delays. To numerically adjust the values of system parameters, click  Edit
Parameters.

Suppose that in this example you know from an independent measurement that the
transport delay in your system is 1.5 s. In the Plant Parameters dialog box, enter
1.5 for τ. Check Fix to fix the parameter value. When you check Fix for a parameter,
neither graphical nor automatic adjustments to the estimated plant model affect that
parameter value.
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• Automatically optimize the system parameters to match the measured response data.

Click  Auto Estimate to update the estimated system parameters using the
current values as an initial guess.

You can continue to iterate using any of these methods to adjust plant structure and
parameter values until the estimated system’s response adequately matches the
measured response.

Save Plant and Tune PID Controller

When you are satisfied with the fit, click  Save Plant. Doing so saves the estimated
plant, Plant1, to the PID Tuner workspace. Doing so also selects the Step Plot:
Reference Tracking figure and returns you to the PID Tuner tab. The PID Tuner
automatically designs a PI controller for Plant1, and displays a response plot for the
new closed-loop system. The Plant menu reflects that Plant1 is selected for the current
controller design.
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Tip To examine variables stored in the PID Tuner workspace, open the Data Browser.

You can now use the PID Tuner tools to refine the controller design for the estimated
plant and examine tuned system responses.

You can also export the identified plant from the PID Tuner workspace to the MATLAB

workspace for further analysis. In the PID Tuner tab, click  Export. Check the
plant model you want to export to the MATLAB workspace. For this example, export
Plant1, the plant you identified from response data. You can also export the tuned PID

controller. Click  OK. The models you selected are saved to the MATLAB workspace.

Identified plant models are saved as identified LTI models, such as idproc or idss.

More About
• “System Identification for PID Control” on page 4-50
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System Identification for PID Control

In this section...

“Plant Identification” on page 4-50
“Linear Approximation of Nonlinear Systems for PID Control” on page 4-51
“Linear Process Models” on page 4-52
“Advanced System Identification Tasks” on page 4-53

Plant Identification

In many situations, a dynamic representation of the system you want to control is
not readily available. One solution to this problem is to obtain a dynamical model
using identification techniques. The system is excited by a measurable signal and the
corresponding response of the system is collected at some sample rate. The resulting
input-output data is then used to obtain a model of the system such as a transfer
function or a state-space model. This process is called system identification or estimation.
The goal of system identification is to choose a model that yields the best possible fit
between the measured system response to a particular input and the model’s response to
the same input.

If you have a Simulink model of your control system, you can simulate input/output data
instead of measuring it. The process of estimation is the same. The system response to
some known excitation is simulated, and a dynamical model is estimated based upon the
resulting simulated input/output data.

Whether you use measured or simulated date for estimation, once a suitable plant model
is identified, you impose control objectives on the plant based on your knowledge of
the desired behavior of the system that the plant model represents. You then design a
feedback controller to meet those objectives.

If you have System Identification Toolbox software, you can use PID Tuner for both
plant identification and controller design in a single interface. You can import input/
output data and use it to identify one or more plant models. Or, you can obtain simulated
input/output data from a Simulink model and use that to identify one or more plant
models. You can then design and verify PID controllers using these plants. The PID
Tuner also allows you to directly import plant models, such as one you have obtained
from an independent identification task.
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For an overview of system identification, see “About System Identification” in the System
Identification Toolbox documentation.

Linear Approximation of Nonlinear Systems for PID Control

The dynamical behavior of many systems can be described adequately by a linear
relationship between the system’s input and output. Even when behavior becomes
nonlinear in some operating regimes, there are often regimes in which the system
dynamics are linear. For example, the behavior of an operational amplifier or the lift-vs-
force dynamics of aerodynamic bodies can be described by linear models, within a certain
limited operating range of inputs. For such a system, you can perform an experiment
(or a simulation) that excites the system only in its linear range of behavior and collect
the input/output data. You can then use the data to estimate a linear plant model, and
design a PID controller for the linear model.

In other cases, the effects of nonlinearities are small. In such a case, a linear model
can provide a good approximation, such that the nonlinear deviations are treated as
disturbances. Such approximations depend heavily on the input profile, the amplitude
and frequency content of the excitation signal.

Linear models often describe the deviation of the response of a system from some
equilibrium point, due to small perturbing inputs. Consider a nonlinear system whose
output, y(t), follows a prescribed trajectory in response to a known input, u(t). The
dynamics are described by dx(t)/dt = f(x, u), y = g(x,u) . Here, x is a vector of internal
states of the system, and y is the vector of output variables. The functions f and g, which
can be nonlinear, are the mathematical descriptions of the system and measurement
dynamics. Suppose that when the system is at an equilibrium condition, a small
perturbation to the input, Δu, leads to a small perturbation in the output, Δy:
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For example, consider the system of the following Simulink block diagram:
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When operating in a disturbance-free environment, the nominal input of value 50 keeps
the plant along its constant trajectory of value 2000. Any disturbances would cause the
plant to deviate from this value. The PID Controller’s task is to add a small correction
to the input signal that brings the system back to its nominal value in a reasonable
amount of time. The PID Controller thus needs to work only on the linear deviation
dynamics even though the actual plant itself might be nonlinear. Thus, you might be able
to achieve effective control over a nonlinear system in some regimes by designing a PID
controller for a linear approximation of the system at equilibrium conditions.

Linear Process Models

A common use case is designing PID controllers for the steady-state operation of
manufacturing plants. In these plants, a model relating the effect of a measurable input
variable on an output quantity is often required in the form of a SISO plant. The overall
system may be MIMO in nature, but the experimentation or simulation is carried out in
a way that makes it possible to measure the incremental effect of one input variable on a
selected output. The data can be quite noisy, but since the expectation is to control only
the dominant dynamics, a low-order plant model often suffices. Such a proxy is obtained
by collecting or simulating input-output data and deriving a process model (low order
transfer function with unknown delay) from it. The excitation signal for deriving the data
can often be a simple bump in the value of the selected input variable.
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Advanced System Identification Tasks

In the PID Tuner, you can only identify single-input, single output, continuous-
time plant models. Additionally, the PID Tuner cannot perform the following system
identification tasks:

• Identify transfer functions of arbitrary number of poles and zeros. (PID Tuner can
identify transfer functions up to three poles and one zero, plus an integrator and a
time delay. PID Tuner can identify state-space models of arbitrary order.)

• Estimate the disturbance component of a model, which can be useful for separating
measured dynamics from noise dynamics.

• Validate estimation by comparing the plant response against an independent dataset.
• Perform residual analysis.

If you need these enhanced identification features, import your data into the System
Identification Tool (systemIdentification). Use the System Identification Tool to
perform model identification and export the identified model to the MATLAB workspace.
Then import the identified model into PID Tuner for PID controller design.

For more information about the System Identification Tool, see “Identify Linear Models
Using System Identification App”.
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Input/Output Data for Identification

In this section...

“Data Preparation” on page 4-54
“Data Preprocessing” on page 4-54

Data Preparation

Identification of a plant model for PID tuning requires a single-input, single-output
dataset.

If you have measured data, use the data import dialogs to bring in identification data.
Some common sources of identification data are transient tests such as bump test and
impact test. For such data, PID Tuner provides dedicated dialogs that require you to
specify data for only the output signal while characterizing the input by its shape. For an
example, see “Interactively Estimate Plant Parameters from Response Data”.

If you want to obtain input/output data by simulating a Simulink model, the PID Tuner
interface lets you specify the shape of the input stimulus used to generate the response.
For an example, see the Simulink Control Design example “Design a PID Controller
Using Simulated I/O Data.”

Data Preprocessing

PID Tuner lets you preprocess your imported or simulated data. PID Tuner provides
various options for detrending, scaling, and filtering the data.

It is strongly recommended to remove any equilibrium-related signal offsets from the
input and output signals before proceeding with estimation. You can also filter the data
to focus the signal contents to the frequency band of interest.

Some data processing actions can alter the nature of the data, which can result in
transient data (step, impulse or wide pulse responses) to be treated as arbitrary input/
output data. When that happens the identification plot does not show markers for
adjusting the model time constants and damping coefficient.

For an example that includes a data-preprocessing step, see:

• “Interactively Estimate Plant Parameters from Response Data”
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Choosing Identified Plant Structure

PID Tuner provides two types of model structures for representing the plant dynamics:
process models and state-space models.

Use your knowledge of system characteristics and the level of accuracy required by your
application to pick a model structure. In absence of any prior information, you can gain
some insight into the order of dynamics and delays by analyzing the experimentally
obtained step response and frequency response of the system. For more information see
the following topics in the System Identification Toolbox documentation:

• “Identifying Impulse-Response Models”
• “Identifying Frequency-Response Models”

Each model structure you choose has associated dynamic elements, or model parameters.
You adjust the values of these parameters manually or automatically to find an identified
model that yields a satisfactory match to your measured or simulated response data.
In many cases, when you are unsure of the best structure to use, it helps to start with
the simplest model structure, transfer function with one pole. You can progressively try
identification with higher-order structures until a satisfactory match between the plant
response and measured output is achieved. The state-space model structure allows an
automatic search for optimal model order based on an analysis of the input-output data.

When you begin the plant identification task, a transfer function model structure with
one real pole is selected by default. This default set up is not sensitive to the nature
of the data and may not be a good fit for your application. It is therefore strongly
recommended that you choose a suitable model structure before performing parameter
identification.

In this section...

“Process Models” on page 4-57
“State-Space Models” on page 4-60
“Existing Plant Models” on page 4-62
“Switching Between Model Structures” on page 4-63
“Estimating Parameter Values” on page 4-63
“Handling Initial Conditions” on page 4-64
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Process Models

Process models are transfer functions with 3 or fewer poles, and can be augmented by
addition of zero, delay and integrator elements. Process models are parameterized by
model parameters representing time constants, gain, and time delay. In PID Tuner,
choose a process model in the Plant Identification tab using the Structure menu.

For any chosen structure you can optionally add a delay, a zero and/or an integrator
element using the corresponding checkboxes. The model transfer function configured by
these choices is displayed next to the Structure menu.
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The simplest available process model is a transfer function with one real pole and no zero
or delay elements:
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This model is defined by the parameters K, the gain, and T1, the first time constant. The
most complex process-model structure choose has three poles, an additional integrator,
a zero, and a time delay, such as the following model, which has one real pole and one
complex conjugate pair of poles:

H s K
T s

s T s T s T s

e
z s( ) =

+

+( ) + +( )
-1

1 2 11
2 2

w w

t

z
.

In this model, the configurable parameters include the time constants associated with
the poles and the zero, T1, Tω, and Tz. The other parameters are the damping coefficient
ζ, the gain K, and the time delay τ.

When you select a process model type, the PID Tuner automatically computes initial
values for the plant parameters and displays a plot showing both the estimated model
response and your measured or simulated data. You can edit the parameter values
graphically using indicators on the plot, or numerically using the Plant Parameters
editor. For an example illustrating this process, see “Interactively Estimate Plant
Parameters from Response Data”.

The following table summarizes the various parameters that define the available types of
process models.
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Parameter Used By Description

K — Gain All transfer functions Can take any real value.

In the plot, drag the plant
response curve (blue) up or
down to adjust K.

T1 — First time constant Transfer function with one
or more real poles

Can take any value between
0 and T, the time span of
measured or simulated data.

In the plot, drag the red x
left (towards zero) or right
(towards T) to adjust T1.

T2— Second time constant Transfer function with two
real poles

Can take any value between
0 and T, the time span of
measured or simulated data.

In the plot, drag the magenta
x left (towards zero) or right
(towards T) to adjust T2.

Tω — Time constant
associated with the natural
frequency ωn, where Tω =
1/ωn

Transfer function with
underdamped pair (complex
conjugate pair) of poles

Can take any value between
0 and T, the time span of
measured or simulated data.

In the plot, drag one of the
orange response envelope
curves left (towards zero) or
right (towards T) to adjust
Tω.

ζ — Damping coefficient Transfer function with
underdamped pair (complex
conjugate pair) of poles

Can take any value between
0 and 1.

In the plot, drag one of the
orange response envelope
curves left (towards zero) or
right (towards T) to adjust ζ.
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Parameter Used By Description

τ — Transport delay Any transfer function Can take any value between
0 and T, the time span of
measured or simulated data.

In the plot, drag the orange
vertical bar left (towards
zero) or right (towards T) to
adjust τ.

Tz — Model zero Any transfer function Can take any value between
–T and T, the time span of
measured or simulated data.

In the plot, drag the red
circle left (towards –T) or
right (towards T) to adjust
Tz.

Integrator Any transfer function Adds a factor of 1/s to the
transfer function. There is
no associated parameter to
adjust.

State-Space Models

The state-space model structure for identification is primarily defined by the choice of
number of states, the model order. Use the state-space model structure when higher
order models than those supported by process model structures are required to achieve
a satisfactory match to your measured or simulated I/O data. In the state-space model
structure, the system dynamics are represented by the state and output equations:
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y Cx Du

= +

= +

,

.

x is a vector of state variables, automatically chosen by the software based on the
selected model order. u represents the input signal, and y the output signals.

To use a state-space model structure, in the Plant Identification tab, in the Structure
menu, select State-Space Model. Then click Configure Structure to open the State-
Space Model Structure dialog box.
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Use the dialog box to specify model order, delay and feedthrough characteristics. If you
are unsure about the order, select Pick best value in the range, and enter a range
of orders. In this case, when you click Estimate in the Plant Estimation tab, the
software displays a bar chart of Hankel singular values. Choose a model order equal to
the number of Hankel singular values that make significant contributions to the system
dynamics.

When you choose a state-space model structure, the identification plot shows a plant
response (blue) curve only if a valid estimated model exists. For example, if you change
structure after estimating a process model, the state-space equivalent of the estimated
model is displayed. If you change the model order, the plant response curve disappears
until a new estimation is performed.

When using the state-space model structure, you cannot directly interact with the
model parameters. The identified model should thus be considered unstructured with no
physical meaning attached to the state variables of the model.

However, you can graphically adjust the input delay and the overall gain of the model.
When you select a state-space model with a time delay, the delay is represented on the
plot by a vertical orange bar is shown on the plot. Drag this bar horizontally to change
the delay value. Drag the plant response (blue) curve up and down to adjust the model
gain.
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Existing Plant Models

Any previously imported or identified plant models are listed the Plant List section of
the Data Browser. You can define the model structure and initialize the model parameter
values using one of these plants. A process model (idproc object) is retained as is, while
other model types are converted into the state-space model structure.
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Switching Between Model Structures

When you switch from one model structure to another, the software preserves the model
characteristics (pole/zero locations, gain, delay) as much as possible. For example, when
you switch from a one-pole model to a two-pole model, the existing values of T1, Tz, τ and
K are retained, T2 is initialized to a default (or previously assigned, if any) value.

Estimating Parameter Values

Once you have selected a model structure, you have several options for manually or
automatically adjusting parameter values to achieve a good match between the estimated
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model response and your measured or simulated input/output data. For an example that
illustrates all these options, see:

• “Interactively Estimate Plant Parameters from Response Data” (Control System
Toolbox)

• “Interactively Estimate Plant from Measured or Simulated Response Data” Simulink
Control Design)

The PID Tuner does not perform a smart initialization of model parameters when a
model structure is selected. Rather, the initial values of the model parameters, reflected
in the plot, are arbitrarily-chosen middle of the range values. If you need a good starting
point before manually adjusting the parameter values, use the Initialize and Estimate
option from the Plant Identification tab.

Handling Initial Conditions

In some cases, the system response is strongly influenced by the initial conditions. Thus
a description of the input to output relationship in the form of a transfer function is
insufficient to fit the observed data. This is especially true of systems containing weakly
damped modes. PID Tuner allows you to estimate initial conditions in addition to the
model parameters such that the sum of the initial condition response and the input
response matches the observed output well. Use the Estimation Options dialog box
to specify how the initial conditions should be handled during automatic estimation. By
default, the initial condition handling (whether to fix to zero values or to estimate) is
automatically performed by the estimation algorithm. However, you can enforce a certain
choice by using the Initial Conditions menu.

Initial conditions can only be estimated with automatic estimation. Unlike the
model parameters, they cannot be modified manually. However, once estimated they
remain fixed to their estimated values, unless the model structure is changed or new
identification data is imported.

If you modify the model parameters after having performed an automatic estimation, the
model response will show a fixed contribution (i.e., independent of model parameters)
from initial conditions. In the following plot, the effects of initial conditions were
identified to be particularly significant. When the delay is adjusted afterwards, the
portion of the response to the left of the input delay marker (the τ Adjustor) comes purely
from initial conditions. The portion to the right of the τ Adjustor contains the effects of
both the input signal as well as the initial conditions.
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Troubleshooting Automatic PID Tuning

This section explains some procedures that can help you obtain better results from the
PID Tuner if the basic procedures yield unsatisfactory controller performance.

In this section...

“Plant Cannot Be Linearized or Linearizes to Zero” on page 4-66
“Cannot Find a Good Design in the PID Tuner” on page 4-67
“Simulated Response Does Not Match the PID Tuner Response” on page 4-67
“Cannot Find an Acceptable PID Design in the Simulated Model” on page 4-69
“Controller Performance Deteriorates When Switching Time Domains” on page 4-70
“When Tuning the PID Controller, the D Gain Has a Different Sign from the I Gain” on
page 4-70

Plant Cannot Be Linearized or Linearizes to Zero

What This Means

When you open the PID Tuner, it attempts to linearize the model at the operating point
specified by the model initial conditions. Sometimes, PID Tuner cannot obtain a non-zero
linear system for the plant as seen by the PID controller.

How to Fix It

If the plant model in the PID loop cannot be linearized, you have several options for
obtaining a linear plant model for PID tuning

• Linearize the model at a different operating point. For more information, see “Tune at
a Different Operating Point” on page 4-17.

• Import an LTI model object representing the plant from the MATLAB workspace. In
the PID Tuner tab, in the Plant menu, select Import.

For instance, you can import frequency response data (an frd model) obtained by
frequency response estimation. For an example, see “Designing PID Controller in
Simulink with Estimated Frequency Response”.

• Identify a linear plant model from simulated or measured response data (requires
System Identification Toolbox software). PID Tuner uses system identification to
estimate a linear plant model from the time-domain response of your plant to an
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applied input. For an example, see Design a PID Controller Using Simulated I/O
Data.

Cannot Find a Good Design in the PID Tuner

What This Means

You have adjusted the PID Tuner sliders, but you cannot find a design that meets your
design requirements when you analyze the PID Tuner response plots.

How to Fix It

Try a different PID controller type. It is possible that your controller type is not the best
choice for your plant or your requirements.

For example, the closed-loop step response of a P- or PD-controlled system can settle on a
value that is offset from the setpoint. If you require a zero steady-state offset, adding an
integrator (using a PI or PID controller) can give better results.

As another example, in some cases a PI controller does not provide adequate phase
margin. You can instead try a PID controller to give the tuning algorithm extra degrees
of freedom to satisfy both speed and robustness requirements simultaneously.

To switch controller types, in the PID Controller block dialog box:

• Select a different controller type from the Controller drop-down menu.
• Click Apply to save the change.
• Click Tune to instruct the PID Tuner to tune the parameters for the new controller

type.

If you cannot find any satisfactory controller with the PID Tuner, PID control possibly is
not sufficient for your requirements. You can design more complex controllers using the
SISO Design Tool. For more information, see “Design and Analysis of Control Systems”
on page 4-103.

Simulated Response Does Not Match the PID Tuner Response

What This Means

When you run your Simulink model using the PID gains computed by the PID Tuner, the
simulation output differs from the PID Tuner response plot.

../examples/design-a-pid-controller-using-simulated-i-o-data.html
../examples/design-a-pid-controller-using-simulated-i-o-data.html
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There are several reasons why the simulated model can differ from the PID Tuner
response plot. If the simulated result meets your design requirements (despite differing
from the PID Tuner response), you do not need to refine the design further. If the
simulated result does not meet your design requirements, see “Cannot Find an
Acceptable PID Design in the Simulated Model” on page 4-69.

Some causes for a difference between the simulated and PID Tuner responses include:

• The reference signals or disturbance signals in your Simulink model differ from the
step signals the PID Tuner uses. If you need step signals to evaluate the performance
of the PID controller in your model, change the reference signals in your model to step
signals.

• The structure of your model differs from the loop structure that the PID Tuner
designs for. The PID Tuner assumes the loop configuration shown in the following
figure.

PID

G y
+
-

r
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Plant

d1

+

+

d2

+

+

u

As the figure illustrates, the PID Tuner designs for a PID in the feedforward path of a
unity-gain feedback loop. If your Simulink model differs from this structure, or injects
a disturbance signal in a different location, your simulated response differs from the
PID Tuner response.

• You have enabled nonlinear features in the PID Controller block in your model,
such as saturation limits or anti-windup circuitry. The PID Tuner ignores nonlinear
settings in the PID Controller block, which can cause the PID Tuner to give a
different response from the simulation.

• Your Simulink model has strong nonlinearities in the plant that make the
linearization invalid over the full operating range of the simulation.

• You selected an operating point using the PID Tuner that is different from the
operating point saved in the model. In this case, the PID Tuner has designed a
controller for a different operating point than the operating point that begins the
simulation. Simulate your model using the PID Tuner operating point by initializing
your Simulink model with this operating point. See “Simulate Simulink Model at
Specific Operating Point” on page 1-42.
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Cannot Find an Acceptable PID Design in the Simulated Model

What This Means

You tune the PID Controller using the PID Tuner and run your Simulink model with
the tuned PID gains. However, the simulated response of your model does not meet your
design requirements.

How to Fix It

In some cases, PID control is not adequate to meet the control requirements for your
plant. If you cannot find a design that meets your requirements when you simulate your
model, consider using a more complex controller. See “Design and Analysis of Control
Systems” on page 4-103.

If you have enabled saturation limits in the PID Controller block without antiwindup
circuitry, enable antiwindup circuitry. You can enable antiwindup circuitry in two ways:

• Activate the PID Controller block antiwindup circuitry on the PID Advanced tab of
the block dialog box.

• Use the PID Controller block tracking mode to implement your own antiwindup
circuitry external to the block. Activate the PID Controller block tracking mode on the
PID Advanced tab of the block dialog box.

To learn more about both ways of implementing antiwindup circuitry, see Anti-Windup
Control Using a PID Controller.

After enabling antiwindup circuitry, run the simulation again to see whether controller
performance is acceptable.

If the loop response is still unacceptable, try slowing the response of the PID controller.
To do so, reduce the response time or the bandwidth in the PID Tuner. See “Refine the
Design” on page 4-14.

If you still cannot find an acceptable controller with antiwindup circuitry enabled in the
PID Controller block, consider using a more complex controller. See “Design and Analysis
of Control Systems” on page 4-103.
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Controller Performance Deteriorates When Switching Time Domains

What This Means

You obtain a well-tuned continuous-time PID controller. Then, you convert the controller
time domain using the Time Domain selector button in the PID Controller block dialog
box. The controller performs poorly or even becomes unstable when you convert the
controller to discrete time.

How To Fix It

In some cases, you can improve performance by adjusting the sample time by trial and
error. However, this procedure can yield a poorly tuned controller, especially where your
application imposes a limit on the sample time. Instead, if you change time domains and
the response deteriorates, click Tune in the PID Controller block dialog to design a new
controller.

Note: If the plant and controller time domains differ, the PID Tuner discretizes the
plant (or converts the plant to continuous time) to match the controller time domain.
If the plant and controller both use discrete time, but have different sample times, the
PID Tuner resamples the plant to match the controller. All conversions use the tustin
method (see “Continuous-Discrete Conversion Methods” in the Control System Toolbox
User's Guide).

When Tuning the PID Controller, the D Gain Has a Different Sign from the
I Gain

What This Means

When you use the PID Tuner to design a controller, the resulting derivative gain D can
have a different sign from the integral gain I. The PID Tuner always returns a stable
controller, even if one or more gains are negative.

For example, the following expression gives the PID controller transfer function in Ideal
form:
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For a stable controller, all three numerator coefficients require positive values. Because
N is positive, IN  >  0 requires that I is also positive. However, the only restriction on
D is (1 + DN) > 0. Therefore, as long as DN > –1, a negative D still yields a stable PID
controller.

Similar reasoning applies for any controller type and for the Parallel controller form.
For more information about controller transfer functions, see the PID Controller block
reference page.
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Designing a Simulink PID Controller (2DOF) Block for a Reactor

This example shows how to use PID Tuner to tune a Simulink PID Controller (2DOF)
block.

Introduction of the PID Controller (2DOF) Block

With a 2DOF PID controller, also known as ISA-PID controller, you can achieve good
performance for both reference tracking and disturbance rejection. It contains a standard
PID controller in the feedback loop and adds a pre-filter to the reference signal. The pre-
filter helps produce a smoother transient response to set-point changes. In this example,
you use a Simulink PID Controller (2DOF) block to control a continuous stirred tank
reactor (CSTR) and you design this 2DOF PID controller in the PID Tuner.

A typical design workflow with the PID Tuner involves the following tasks:

(1) Launch the PID Tuner. When launching, the software automatically computes a
linear plant model from the Simulink model and designs an initial controller.

(2) Tune the controller in the PID Tuner by manually adjusting design criteria in two
design modes. The tuner computes PID parameters that robustly stabilize the system.

(3) Export the parameters of the designed controller back to the PID Controller block and
verify controller performance in Simulink.

Opening the Model

Open the CSTR control model and take a few moments to explore it.

open_system('scdcstrctrlpidblock');
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The CSTR plant is initialized at an equilibrium operating point. The nominal value of
the residual concentration is 1.96 mol/L, which is the initial condition of the Residual
Concentration Reference block and the Integrator1 block in the CSTR subsystem.

The initial condition of the integrator I0 in the PID controller block is determined by the
equilibrium operating point. In this example, since we have a PI controller in parallel
form,

   I0 = u0 - ((b-1)*y0*P)

where u0 is the steady state controller output (300), and y0 is the steady state plant
output (1.96). Since b is 1, I0 = u0 = 300.

For background, see Seborg, D.E. et al., "Process Dynamics and Control", 2nd Ed., 2004,
Wiley, pp.34-36.

Design Overview

In this example, control the residual concentration of the CSTR by manipulating reactor
coolant temperature. The overall design requirements are:

• Track a sudden decrease of 0.5 in the reference signal from a Simulink step block
Residual Concentration Reference. The detailed design requirements are:

         Settling time under 10 seconds
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         Zero steady-state error to the step reference input

         Overshoot below 0.1

• Reject a 5 degree sudden increase in the feed temperature from a Simulink step block
Feed Temperature. The detailed design requirements are:

         Settling time under 10 seconds

         Peak deviation from steady state below 0.01

In this example you design a PI controller in the PID Tuner to achieve good responses in
both reference tracking and disturbance rejection.

Opening the PID Tuner

To launch the PID Tuner, double-click the PID Controller block to open its block dialog.
In the Main tab, click Tune.

After you launch the PID Tuner, close the PID block dialog and move the PID Tuner
beside the Simulink model. Also, open the residual concentration scope window.

Initial PID Design

When the PID Tuner launches, the software computes a linearized plant model. The
software automatically identifies the plant input and output, and uses the current
operating point for the linearization. The plant can have any order and can have time
delays.

The PID Tuner computes an initial PI controller to achieve a reasonable tradeoff between
performance and robustness. By default, step reference tracking performance displays in
the plot.
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Click Show parameters to view controller parameters P, I, b, and a set of performance
and robustness measurements. In this example, the initial PI controller design gives a
settling time of 4.4 second, which meets the requirement.

The following figure shows the PID Tuner dialog with initial design:
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To test the initial design on the nonlinear model, click Update Block in the PID
Tuner. This writes the parameters back to the PID block in the Simulink model. Run a
simulation and view the closed-loop response:
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The transient response of disturbance rejection shows that its peak deviation is about
0.2, which exceeds the design requirement. You need to reduce the peak deviation by at
least 50% using the PID Tuner.

Design for Disturbance Rejection in the Time Domain Design Mode
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The PID Tuner provides step plot for different loop responses such as reference
tracking (from r to y) and controller efforts (from r to u), etc. In this example since the
disturbance occurs at the reactor feed temperature, the closest plot you can get is the
input disturbance rejection plot that assumes a step disturbance occurs at the input of
the plant model.

Click Add Plot, select Input disturbance rejection and click Add to create an input
disturbance plot. The plot shows the disturbance rejection performance with initial
controller:

You need to reduce the peak deviation from -0.02 to -0.01 while maintaining a settling
time less than 10 seconds. First, try to reduce the peak deviation by decreasing the
response time, which can be achieved by moving the response time slider to the right.
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The following figure shows the peak deviation is less than 0.01 when response time is
reduced to 0.6 second:

But the settling time now significantly exceeds 10 seconds. To reduce the settling time
below 10 seconds, you also need to make the transient behave more aggressively, which
can be achieved by moving the transient behavior slider to the left.

The following figure shows the final disturbance rejection performance when the
response time is 0.6 seconds and the transient behavior value is 0.25.



4 Designing Compensators

4-80

To test the new design on the nonlinear model, click Update Block in the PID Tuner.
Run a simulation and view the closed-loop response:



 Designing a Simulink PID Controller (2DOF) Block for a Reactor

4-81

The disturbance rejection performance satisfies the requirements. However, because the
controller is very aggressive, the overshoot of reference tracking now exceeds the limit as
shown in the figure below.
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You need to adjust the pre-filter in the 2DOF PID block to improve the reference tracking
performance.

Completing PID Design with Set-point Weighting

The parameter b in an ISA PI or PID controller is the set-point weight on the reference
signal feeding into the proportional gain of the controller. It has a range between 0 and
1, and its default value is 1. By reducing its value, the reference tracking performance
becomes smoother. In this example, open the PID block dialog and set b to 0.

Because b and P are changed, you need to adjust the initial condition of the integrator I0
in the PID controller block to make sure the initial operating point is still at equilibrium.
The relationship is:

   I0 = u0 - ((b-1)*y0*P)
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where u0 is 300 and y0 is 1.96. With P from PID Tuner (-107) and b from the block
dialog (0), I0 becomes 90. Update the initial condition of the integrator with this value in
the block dialog and the simulation will start at the equilibrium operating point.

The following figure shows that there is no overshoot in reference tracking with the
updated design.
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In summary, you can design a 2DOF PID controller in two steps to achieve balanced
performance in reference tracking and disturbance rejection. The first step is using the
PID Tuner to obtain good load disturbance rejection; and the second step is manually
adjusting set-point weights b and c in the block dialog to obtain good reference tracking.
Notice that changing b and c does not affect closed-loop stability or load disturbance
rejection performance.
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bdclose('scdcstrctrlpidblock')
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Designing PID Controller in Simulink with Estimated Frequency
Response

This example shows how to design a PI controller with frequency response estimated
from a plant built in Simulink. This is an alternative PID design workflow when the
linearized plant model is invalid for PID design (for example, when the plant model has
zero gain).

Opening the Model

Open the engine control model and take a few moments to explore it.

mdl = 'scdenginectrlpidblock';

open_system(mdl)

The PID loop includes a PI controller in parallel form that manipulates the throttle
angle to control the engine speed. The PI controller has default gains that makes the
closed loop system oscillate. We want to design the controller using the PID Tuner that is
launched from the PID block dialog.

open_system([mdl '/Engine Speed (rpm)'])

sim(mdl);
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PID Tuner Obtaining a Plant Model with Zero Gain From Linearization

In this example, the plant seen by the PID block is from throttle angle to engine speed.
Linearization input and output points are already defined at the PID block output and
the engine speed measurement respectively. Linearization at the initial operating point
gives a plant model with zero gain.

% Hide scope

close_system([mdl '/Engine Speed (rpm)'])

% Obtain the linearization input and output points

io = getlinio(mdl);

% Linearize the plant at initial operating point

linsys = linearize(mdl,io)
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linsys =

 

  d = 

                Throttle Ang

   EngineSpeed             0

 

Static gain.

The reason for obtaining zero gain is that there is a triggered subsystem "Compression"
in the linearization path and the analytical block-by-block linearization does not support
events-based subsystems. Since the PID Tuner uses the same approach to obtain a linear
plant model, the PID Tuner also obtains a plant model with zero gain and reject it during
the launching process.

To launch the PID Tuner, open the PID block dialog and click Tune button. An
information dialog shows up and indicates that the plant model linearized at initial
operating point has zero gain and cannot be used to design a PID controller.
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The alternative way to obtain a linear plant model is to directly estimate the frequency
response data from the Simulink model, create an FRD system in MATLAB Workspace,
and import it back to the PID Tuner to continue PID design.

Obtaining Estimated Frequency Response Data Using Sinestream Signals

Sinestream input signal is the most reliable input signal for estimating an accurate
frequency response of a Simulink model using frestimate command. More information
on how to use frestimate can be found in the example “"Frequency Response
Estimation Using Simulation-Based Techniques"” in Simulink Control Design examples.

In this example, we create a sine stream that sweeps frequency from 0.1 to 10 rad/sec. Its
amplitude is set to be 1e-3. You can inspect the estimation results using the bode plot.

% Construct sine signal
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in = frest.Sinestream('Frequency',logspace(-1,1,50),'Amplitude',1e-3);

% Estimate frequency response

sys = frestimate(mdl,io,in); % this command may take a few minutes to finish

% Display Bode plot

figure;

bode(sys);

Designing PI with the FRD System in PID Tuner

SYS is a FRD system that represents the plant frequency response at the initial
operating point. To use it in the PID Tuner, we need to import it after the Tuner is
launched. Click Plant and select Import.
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Click the 2nd radio button, select "sys" from the list, and click "OK" to import the FRD
system into the PID Tuner. The automated design returns a stabilizing controller. Click
Add Plot and select Open-Loop Bode plot. The plot shows reasonable gain and phase
margin. Click Show Parameters to see the gain and phase margin values. Time domain
response plots are not available for FRD plant models.
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Click Update Block to update the PID block P and I gains to the PID.

Simulating Closed-Loop Performance in Simulink Model

Simulation in Simulink shows that the new PI controller provides good performance
when controlling the nonlinear model.



 Designing PID Controller in Simulink with Estimated Frequency Response

4-95

Close the model.

bdclose(mdl);
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Designing a Family of PID Controllers for Multiple Operating Points

This example shows how to design an array of PID controllers for a nonlinear plant in
Simulink that operates over a wide range of operating points.

Opening the Plant Model

The plant is a continuous stirred tank reactor (CSTR) that operates over a wide range of
operating points. A single PID controller can effectively use the coolant temperature to
regulate the output concentration around a small operating range that the PID controller
is designed for. But since the plant is a strongly nonlinear system, control performance
degrades if operating point changes significantly. The closed-loop system can even
become unstable.

Open the CSTR plant model.

mdl = 'scdcstrctrlplant';

open_system(mdl)
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For background, see Seborg, D.E. et al., "Process Dynamics and Control", 2nd Ed., 2004,
Wiley, pp.34-36.

Introduction to Gain Scheduling

A common approach to solve the nonlinear control problem is using gain scheduling with
linear controllers. Generally speaking designing a gain scheduling control system takes
four steps:

(1) Obtain a plant model for each operating region. The usual practice

is to linearize the plant at several equilibrium operating points.

(2) Design a family of linear controllers such as PID for the plant

models obtained in the previous step.
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(3) Implement a scheduling mechanism such that the controller

coefficients such as PID gains are changed based on the values of the

scheduling variables.  Smooth (bumpless) transfer between controllers

is required to minimize disturbance to plant operation.

(4) Assess control performance with simulation.

For more background reading on gain scheduling, see a survey paper from W. J.
Rugh and J. S. Shamma: "Research on gain scheduling", Automatica, Issue 36, 2000,
pp.1401-1425.

In this example, we focus on designing a family of PID controllers for the CSTR plant
described in step 1 and 2.

Obtaining Linear Plant Models for Multiple Operating Points

The output concentration C is used to identify different operating regions. The CSTR
plant can operate at any conversion rate between low conversion rate (C=9) and high
conversion rate (C=2). In this example, divide the whole operating range into 8 regions
represented by C = 2, 3, 4, 5, 6, 7, 8 and 9.

In the following loop, first compute equilibrium operating points with the findop
command. Then linearize the plant at each operating point with the linearize
command.

% Obtain default operating point

op = operspec(mdl);

% Set the value of output concentration C to be known

op.Outputs.Known = true;

% Specify operating regions

C = [2 3 4 5 6 7 8 9];

% Initialize an array of state space systems

Plants = rss(1,1,1,8);

for ct = 1:length(C)

    % Compute equilibrium operating point corresponding to the value of C

    op.Outputs.y = C(ct);

    opoint = findop(mdl,op,findopOptions('DisplayReport','off'));

    % Linearize plant at this operating point

    Plants(:,:,ct) = linearize(mdl, opoint);

end

Since the CSTR plant is nonlinear, we expect different characteristics among the linear
models. For example, plant models with high and low conversion rates are stable, while
the others are not.
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isstable(Plants,'elem')'

ans =

     1     1     0     0     0     0     1     1

Designing PID Controllers for the Plant Models

To design multiple PID controllers in batch, we can use the pidtune command. The
following command will generate an array of PID controllers in parallel form. The desired
open loop crossover frequency is at 1 rad/sec and the phase margin is the default value of
60 degrees.

% Design controllers

Controllers = pidtune(Plants,'pidf',pidtuneOptions('Crossover',1));

% Display controller for C=4

Controllers(:,:,4)

ans =

 

             1            s    

  Kp + Ki * --- + Kd * --------

             s          Tf*s+1 

  with Kp = -12.5, Ki = -0.108, Kd = -14.4, Tf = 0.00875

 

Continuous-time PIDF controller in parallel form.

Plot the closed loop responses for step set-point tracking as below:

% Construct closed-loop systems

clsys = feedback(Plants*Controllers,1);

% Plot closed-loop responses

figure;

hold on

for ct = 1:length(C)

    % Select a system from the LTI array

    sys = clsys(:,:,ct);

    sys.Name = ['C=',num2str(C(ct))];

    sys.InputName = 'Reference';

    % Plot step response



4 Designing Compensators

4-100

    stepplot(sys,20);

end

legend('show','location','southeast')

All the closed loops are stable but the overshoots of the loops with unstable plants (C=4,
5, 6 and 7) are too large. It can be improved by increasing the open loop bandwidth to 10
rad/sec.

% Design controllers for unstable plant models

Controllers(:,:,3:6) = pidtune(Plants(:,:,3:6),'pidf',10);

% Display controller for C=4

Controllers(:,:,4)
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ans =

 

             1            s    

  Kp + Ki * --- + Kd * --------

             s          Tf*s+1 

  with Kp = -163, Ki = -13.2, Kd = -138, Tf = 0.0471

 

Continuous-time PIDF controller in parallel form.

All the closed loop responses are satisfactory now.

% Construct closed-loop systems

clsys = feedback(Plants*Controllers,1);

% Plot closed-loop responses

figure;

hold on

for ct = 1:length(C)

    % Select a system from the LTI array

    sys = clsys(:,:,ct);

    set(sys,'Name',['C=',num2str(C(ct))],'InputName','Reference');

    % Plot step response

    stepplot(sys,20);

end

legend('show','location','southeast')
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We designed an array of PID controllers and each of them should give reasonable
performance around the local operating point. The next step is to implement the
scheduling mechanism, which is beyond the scope of this example.

Close the model.

bdclose(mdl);
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Design and Analysis of Control Systems

In this section...

“Compensator Design Process Overview” on page 4-103
“Beginning a Compensator Design Task” on page 4-103
“Selecting Blocks to Tune” on page 4-105
“Selecting Closed-Loop Responses to Design” on page 4-107
“Selecting an Operating Point” on page 4-109
“Creating a SISO Design Task” on page 4-112
“Completing the Design” on page 4-122

Compensator Design Process Overview

Compensator design in the Control and Estimation Tools Manager involves the following
steps:

1 “Selecting Blocks to Tune” on page 4-105
2 “Selecting Closed-Loop Responses to Design” on page 4-107
3 “Selecting an Operating Point” on page 4-109
4 “Creating a SISO Design Task” on page 4-112
5 “Completing the Design” on page 4-122

Beginning a Compensator Design Task

Before you begin this compensator design example, close the Control and Estimation
Tools Manager.

To begin a new compensator design task for the scdmagball_freeform model:

1 Enter scdmagball_freeform at the MATLAB command line to open the
scdmagball_freeform model.

2 Select Analysis > Control Design > Control System Designer from the
scdmagball_freeform window.
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The Control and Estimation Tools Manager opens and creates a new compensator
design task, as shown in the following figure.

The project tree in the left pane of the Control and Estimation Tools Manager
now shows a Simulink Compensator Design Task node as part of
Project - scdmagball_freeform in addition to the Operating Points node. You can
select a node within the tree to display its contents in the right pane.

• For information on the Tunable Blocks pane within the Simulink Compensator
Design Task node, refer to “Selecting Blocks to Tune” on page 4-105.

• For information on the Closed-Loop Signals pane within the Simulink
Compensator Design Task node, refer to “Selecting Closed-Loop Responses to
Design” on page 4-107.
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• For information on the Operating Points node or the Operating Points pane
within the Simulink Compensator Design Task node, refer to “Selecting an
Operating Point” on page 4-109.

Selecting Blocks to Tune

How to Select Blocks to Tune

This section continues the scdmagball_freeform example from “Beginning a
Compensator Design Task” on page 4-103. At this stage in the example, you have
already created a compensator design task.

In this step of the compensator design, you select the blocks in your model to tune from
a list of tunable blocks in your model. Tunable blocks are blocks that you can tune using
the SISO Design Tool to achieve the desired response of your system. Typically, these
blocks serve as the compensators in your model.

In this example, you tune the compensator block called Controller inside the Controller
subsystem of the scdmagball_freeform model. To select this block as the block to
tune:

1 Select the Simulink Compensator Design Task node.
2 In the Tunable Blocks pane, click Select Blocks. The Select Blocks to Tune dialog

box opens.
3 Select the Controller subsystem in the left pane to display that subsystem's tunable

blocks within the center pane. Within the center pane, select the check box next to
the Controller block's name.
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4 Click OK to apply your selections and close the dialog box.

What Blocks Are Tunable?

You can tune parameters in the blocks shown in the following table using Simulink
Control Design software. The block input and output signals for tunable blocks must
have scalar, double-precision values.

Tunable Blocks Simulink Library

Gain Math Operations
LTI System Control System Toolbox
Discrete Filter Discrete
PID Controller (one-degree-of-freedom
only)

• Continuous
• Discrete
• Simulink Extras Additional Linear

State-space blocks • Continuous
• Discrete
• Simulink Extras Additional Linear
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Tunable Blocks Simulink Library

Zero-pole blocks • Continuous
• Discrete
• Simulink Extras Additional Linear

Transfer function blocks • Continuous
• Discrete
• Simulink Extras Additional Linear

You can also tune the following versions of the blocks listed in the table:

• Blocks with custom configuration functions associated with a masked subsystem
• Blocks discretized using the Simulink Model Discretizer

Note: If your model contains Model blocks with normal-mode model references to other
models, you can select tunable blocks in the referenced models for compensator design.

Creating Custom Configuration Functions

When you have masked subsystems that you want to tune in your model, they will not
automatically appear in the list of tunable blocks. For them to appear in the list, you
need to create a custom configuration function for the masked subsystem. The custom
configuration function serves the following functions:

• It informs the Simulink Control Design software that you want this block to be
available for tuning.

• It determines how you want the SISO Design Task to treat the block; it describes
the relationship between the block mask parameters and the poles and zeros of the
transfer function.

To learn how to create a custom configuration function, see Tuning Custom Masked
Subsystems.

Selecting Closed-Loop Responses to Design

This section continues the scdmagball_freeform example from “Selecting Blocks to
Tune” on page 4-105. At this stage in the example a compensator design task has been
created, and tunable blocks have been selected.
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In this step of the compensator design task, you will select the closed loops whose
responses you want to design in your model. A closed-loop system is defined by an input
point, such as a reference or disturbance signal, and an output point, such as a measured
output or actuator signal.

In this example you will design the response of the closed-loop system from the reference
signal to the output of the plant model. To set up linear analysis points to define this
closed-loop system, perform the following steps:

1 On the scdmagball_freeform model diagram, position the mouse on the Reference
signal between the Desired Height block and the Sum block. Right-click and select
Linear Analysis Points > Input Perturbation from the menu to add an input
point.

2 Position the mouse on the signal line at the output of the Magnetic Ball Plant block.
Right-click and select Linear Analysis Points > Output Measurement from the
menu to add an output measurement point.

The model should now appear as follows:

Within the Control and Estimation Tools Manager, click the Closed-Loop Signals tab
of the Simulink Compensator Design Task node to view the input and output points
in the model.
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Within this pane you can view the input and output signals in the model and use the
Active column to select the ones you want to use to define closed-loop systems for
compensator design.

Selecting an Operating Point

This section continues the scdmagball_freeform example from “Selecting Closed-Loop
Responses to Design” on page 4-107. At this stage in the example, a compensator
design task has been created, tunable blocks have been selected, and closed-loop signals
have been selected.

In this step of the compensator design task, you will select the operating point that you
want to use in the compensator design. The Simulink Control Design software uses the
operating point when it linearizes the model before creating a SISO Design Task.
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Note: A compensator designed for the linearized model is likely to control the behavior of
the nonlinear model only in a small region around the operating point that the model was
linearized at. Therefore it is important that the linearization of the model is accurate and
the selection of the operating point about which the system is linearized is an important
step in the compensator design process.

To import an operating point for compensator design, perform the following steps:

1 Select the Operating Points node in the Control and Estimation Tools Manager.
2 Click the Import button, in the bottom-right corner of the Control and Estimation

Tools Manager.
3 In the Operating Point Import dialog box, select MAT-file as the location to import

from.
4 Click Browse and locate the file scdmagball_freeform_operating_point.mat

that you previously saved. If you did not previously save an operating
point, browse to matlabroot/toolbox/slcontrol/slctrldemos/
scdmagball_freeform_operating_point.mat.

5 Click Open to return to the Operating Point Import dialog box.

The Operating Point Import dialog box now shows all the operating points available
within the selected MAT-file. In this case just a single operating point is contained in
the MAT-file.
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6 Select this operating point and click Import to import it into the Control and
Estimation Tools Manager.

Click the Operating Points tab in the Simulink Compensator Design Task node
to select an operating point for the compensator design. For this example, you should
use the operating point that you just imported, called Operating_Point. To specify this
operating point, first select the Linearize at one of the following operating points
option. Then select Operating_Point in the list, as shown in the following figure.



4 Designing Compensators

4-112

Creating a SISO Design Task

• “What is a SISO Design Task?” on page 4-112
• “Configuring Design Plots” on page 4-113
• “Configuring Analysis Plots” on page 4-115
• “Control Design Linearization Options” on page 4-120
• “Designing Compensators for Plants with Time Delays” on page 4-121

What is a SISO Design Task?

This section continues the scdmagball_freeform example from “Selecting an
Operating Point” on page 4-109. At this stage in the example, a compensator design
task has been created, and tunable blocks, closed-loop signals, and an operating point
have been selected.
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In this step of the compensator design task, you will create and configure a SISO Design
Task in the Control and Estimation Tools Manager. The SISO Design Task includes
several tools for tuning the response of SISO systems:

• A graphical editing environment in the SISO Design Tool window that contains
design plots such as root-locus, and Bode diagrams

• An LTI Viewer window where you can view time and frequency analysis plots of the
system

• A compensator editor where you can directly edit the block mask parameters or the
poles and zeros of compensators in your system

• A tool that automatically generates compensators using PID, internal model control
(IMC), or linear-quadratic-Gaussian (LQG) methods (uses the Control System Toolbox
software)

• Optimization-based tuning methods that automatically tunes the system to satisfy
design requirements (available when you have the Simulink Design Optimization
product)

The Design Configuration Wizard guides you through the selection of the open- and
closed-loop systems you want to design and the configuration of the design and analysis
plots you want to use in the SISO Design Task. To launch the wizard, click Tune
Blocks in the Simulink Compensator Design Task node. The wizard opens in a separate
window.

The first page of the wizard provides an overview of the design configuration process
and lists some issues to consider when selecting design and analysis plots. Click Next to
continue to step 1 of the design configuration process on the second page of the wizard.

Configuring Design Plots

In step 1, select the open- and closed-loop systems that you want to design in your model,
and up to six corresponding design plots you want to use.

Open-loop design allows you to design the response of a closed feedback loop in your
model by artificially opening the loop and designing the response of this open-loop
system. The open-loop design plots use rules of linear control theory to determine the
dynamics of the closed-loop system from those of the open-loop system. Open-loop design
is typically used to tune compensators that lie inside feedback loops.

A set of default open-loop systems is created for your model, shown in the lower half
of the wizard. To create these open-loop systems, the software artificially opens the
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feedback loop at the output signal of each tunable block (at the X in the following figure)
and unwraps the closed-loop system to create the corresponding open-loop system.

C P

H

F

loop opening
         point

The unwrapped open-loop system, which is -CPH, is shown in the following figure. The
open-loop design plots show the negative of the unwrapped open-loop, which is CPH. This
configuration allows you to design controllers using a negative feedback architecture.

P H C

Note that elements that are outside the feedback loop, such as the prefilter F, are not
seen in the open-loop system.

In this example, you will tune the response of Open Loop 1 which is defined by a loop
opening at the output of the Controller block. This open-loop system contains the plant
model and the controller. To design this system, select Open Loop 1 from the menu next
to Plot 1 in the wizard.

Next, select a design plot to use for this open-loop system. Design plots are interactive
plots within the SISO Design Tool. You can use them to graphically tune parameters and
manually move, add, or remove poles and zeros of the tunable blocks to tune and design
the dynamics of open- and closed-loop systems in your model. The following table shows
the design plots, along with their uses, available in the SISO Design Tool.

Type of Design Plot Available Plots in the SISO
Design Tool

Use to tune blocks that act as

Open-loop Root Locus, Nichols, Open-
loop bode

Feedback elements

Closed-loop Closed-loop bode Feedforward or prefilter
elements

You can also use the design plots to specify requirements for stability, performance, or
both to use in using optimization-based automated tuning.
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For this example, select Root Locus from the menu next to Plot 1 to use this plot type
as the design plot for Open Loop 1. Step 1 of the wizard should now look similar to the
following figure.

Click Next to proceed to step 2 of the wizard.

Configuring Analysis Plots

In this step, select the closed-loop responses that you want to view while designing your
model, and the corresponding analysis plots you want to use to view them.

Analysis plots are plots that show the responses or dynamics of a closed or open loop
systems or tunable blocks in your model. Although you cannot directly edit the analysis
plots by graphically moving gains, poles, zeros, etc., changes that you make in the design
plots, compensator editor, or automated design tools will affect the responses in the
analysis plots. Possible analysis plots include

• Step response
• Impulse response
• Bode and Bode magnitude
• Nyquist
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• Nichols
• Pole/Zero

You can use analysis plots to

• Analyze closed-loop, open-loop, and tuned block responses in your control system.
• Define stability and performance requirements for optimization-based automated

tuning.

For this example, select Step from the menu for Plot 1 to create a step response analysis
plot.

Next, select the closed-loop system that you want to display in this plot. A closed-loop
system is a system that has not had any feedback loops opened for open-loop design.
It typically defines the system whose response you want to control and it lies between
the input and output signals of interest, for example between a reference signal and the
plant output signal.

Linearization input and output points placed on signal lines in your model define closed-
loop systems. The closed-loop system includes all blocks in the path between the input
and the output.

C P

H

R F

FF

Closed-loop control system

Input point
Output point

The software automatically displays a list of up to four closed-loop systems in your model,
based on the input and output points on the signal lines. In this example, only one closed-
loop system appears in the wizard, the closed-loop from the Desired Height signal to the
output of the Magnetic Ball Plant Model, because the system only has one input and
one output point. You can add additional closed-loop responses, as well as open-loop and
tunable block responses. To add a new response, click the Add Responses button and
complete the Select a New Response to Analyze dialog box.
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To display the current closed-loop system in the step response plot of Plot 1, select the
check box under Plot 1 to the left of the closed-loop system. Step 2 of the wizard should
now look similar to the following figure.

Click Finish to complete the wizard and create the SISO Design Task underneath the
Simulink Compensator Design Task node within the Control and Estimation Tools
Manager, as shown in the following figure.
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The SISO Design Task also includes the design plots you configured in the Design
Configuration Wizard. They appear within the SISO Design Tool window, as shown in
the following figure.
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In addition, the SISO Design Task also includes the analysis plots you configured in the
Design Configuration Wizard. They appear within the LTI Viewer window, as shown in
the following figure.
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Control Design Linearization Options

To modify or adjust the settings used to linearize a model when creating a SISO Design
Task, click the Simulink Compensator Design Task node, and then select Tools > 
Options. The Options dialog box opens.



 Design and Analysis of Control Systems

4-121

Specify the linearization sample time and rate conversion method. If, for the Rate
conversion method parameter, you specify Tustin W/Prewarping, you must also
specify a pre-warp frequency.

Designing Compensators for Plants with Time Delays

You can design compensators for plants with time delays using the tools in the SISO
Design Task. These tools automatically create a linear model of your plant. Within this
model, you can represent time delays in two ways—using Padé approximation or exact
delay.

To represent time delays
in the linear plant model
using...

You must...

Padé approximation
representations

Specify the Padé order in the Block Parameters window for
each Simulink blocks with delays.

Exact delay
representations

Open the Simulink Compensator Design Task, and select
Tools > Options. Then, in the Options dialog box, select
Enable design of linearized control systems with exact
delay(s).

Note: Some tools do not support exact time delays and automatically compute a Padé
approximation for delays. In this case, you receive a notification. The software uses the
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Padé order specified in SISO Tool Preferences and ignores the Padé order specified in
your block. For more information, see “Time Delays Pane”.

For more information on the linearizing models with time delays, see “Models with Time
Delays” on page 2-130. For more information on the tools available for compensator
design, see “Tools for Compensator Design” on page 4-122.

Completing the Design

• “Tools for Compensator Design” on page 4-122
• “Storing and Retrieving Designs” on page 4-126
• “Writing the Design to the Simulink Model” on page 4-128
• “Compare and Contrast the SISO Design Task and Enhanced SISO Design Task” on

page 4-130
• “Design Operating Point Node” on page 4-133
• “SISO Tool Options” on page 4-134

Tools for Compensator Design

This section continues the scdmagball_freeform example from “Creating a SISO Design
Task” on page 4-112. At this stage in the example, a compensator design task has been
created, tunable blocks, closed-loop signals, and an operating point have been selected,
design and analysis plots have been created, and a SISO Design Task node has been
created in the Control and Estimation Tools Manager.

In this step of the compensator design task, you will complete the design of the
compensator in the scdmagball_freeform model, using the SISO Design Task node. For
a more detailed discussion of the SISO Design Task node, refer to the Control System
Toolbox documentation.

The SISO Design Task node contains five panes with various tools for designing the
compensators in your system.

• Architecture:

• Configure loops for multi-loop design by opening signals to remove the effects of
other feedback loops.

• Import compensators into your system.
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• Convert the sample time of the system or switch between different sample times to
design different compensators.

• Compensator Editor:

• Directly edit the poles, zeros, and gains of the compensator.
• Add or remove poles and zeros to the compensators.

• Graphical Tuning:

• Configure design plots in the SISO Design Tool.
• Use design plots to graphically manipulate the response of the system.

• Analysis Plots:

• Configure analysis plots in the LTI Viewer.
• Use analysis plots to view the response of open- or closed-loop systems.

• Automated Tuning: Design compensators using one of several automated methods.

• Automatically generate compensators using PID, internal model control (IMC), or
linear-quadratic-Gaussian (LQG) methods (uses Control System Toolbox software).

• Use optimization-based methods that automatically tune the system to satisfy
design requirements (available when you have the Simulink Design Optimization
product).

You can use any of these design methods, or a combination of methods, to design
the compensators for your system. A suitable final design for the Controller of the
scdmagball_freeform model is:

• Gain: -16000
• Integrator at the origin
• Complex zeros at -10±10i
• Real pole at -1000

You can use the Compensator Editor in the SISO Design Task node to specify these
settings. The initial design contains an integrator at the origin. Specify the remaining
settings as follows:

• Gain — Enter -16000 in the text box to the right of the equal sign in the
Compensator area.
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• Complex zeros — In the Dynamics table, right-click and then select Add Pole/Zero
> Complex Zero. Select the new complex zero in the Dynamics table. In the Edit
Selected Dynamics table:

• Enter -10 in the Real Part field.
• Enter 10 in the Imaginary Part field.

• Real pole — In the Dynamics table, right-click and then select Add Pole/Zero >
Real Pole. Select the new real pole in the Dynamics table. In the Edit Selected
Dynamics table:

• Enter -1000 in the Location field.

The Control and Estimation Tools Manager should now appear similar to the following:
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With these settings, the root-locus diagram and step-response plot should look similar to
the following figures.
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Storing and Retrieving Designs

When you design a compensator within a Simulink Compensator Design Task,
you can store the current design. You can retrieve the stored design at any time. This
storage and retrieval capability lets you continue designing and still be able to return to
a previously saved version of the design.

This section continues the example from “Completing the Design” on page 4-122. At
this stage in the example, a compensator has been designed to control the system. To
store the design within the SISO Design Task node, perform the following steps:

1 Select the SISO Design Task node in the Control and Estimation Tools Manager.
2 Underneath the SISO Design Task panes, click the Store Design button.
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Clicking this button adds the current design to the Design History node as shown
in the following figure. The default name for the design is Design.

To rename the design to something more descriptive:

1 Right-click the Design node underneath the Design History node.
2 Select Rename from the right-click menu.
3 Enter a name for your design. For this example, call the design

scdmagball_freeform Design.

The Control and Estimation Tools Manager should now appear as follows:
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Note: After you store a compensator design, you can continue to refine it. If you make
undesired changes, you can retrieve the stored design by selecting it in the Design
History node and then clicking the Retrieve Design button.

Writing the Design to the Simulink Model

When designing a compensator within a Simulink Compensator Design Task node,
you can write the compensator design to the Simulink model. This is useful when

• You want to see how the current design performs in the full nonlinear model.
• You have completed the design and you want to update the model with the newly

designed parameters.

When you write the compensator design to your Simulink model:
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• If the block parameters are numerical, the software writes new numerical values to
the tuned block.

• If the block parameters are variables in the base workspace or the model workspace
(including Simulink.Parameter objects), the software writes the tuned values to
those variables. The block parameters remain the workspace variables.

There are two ways to write the design to your Simulink model:

• Write the tuned parameters to your model when you have finished your design —
Click the Design node of the Control and Estimation Tools Manager and click the
Update Simulink Block Parameters button.

• Automatically update the block parameters as you tune the design — select the
Design History node in the Control and Estimation Tools Manager and click the
checkbox next to Automatically update block parameters.

For example, continue the example from “Storing and Retrieving Designs” on page
4-126. At this stage in the example you have designed a compensator to control the
system and stored the design within the SISO Design Task node. To write the stored
design to the scdmagball_freeform model, perform the following steps:

1 Select the scdmagball_freeform Design node under the Design History node in
the Control and Estimation Tools Manager.

2 Click the Update Simulink Block Parameters button.

You can now simulate the scdmagball_freeform model containing the newly designed
Controller block.

After simulation, the Scope block of the scdmagball_freeform model should look
similar to the following figure.
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The system is now stable and the height of the magnetic ball settles at the desired height
of 0.05 m.

Compare and Contrast the SISO Design Task and Enhanced SISO Design Task

The SISO Design Task is a graphical user interface (GUI) that simplifies the task of
designing controllers. This section describes the similarities and differences between
the SISO Design Task, which is available in the Control System Toolbox product, and
the enhanced SISO Design Task, which is available with the Simulink Control Design
product.

The following figure shows the SISO Design Task as it appears in the Control and
Estimation Tools Manager.
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The following figure shows the enhanced SISO Design Task as it appears under the
Simulink Compensator Design Task node in the Control and Estimation Tools
Manager.
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The following table summarizes the similarities and differences between the SISO
Design Task and the enhanced SISO Design Task:

Similarities Differences

• Similar layout
• Graphical Tuning, Analysis Plots,

and Automated Tuning panes have
the same functionality. For more
information about these tabs, see “Tools
for Compensator Design” on page
4-122.

• Architecture tab — The SISO Tool
lets you change the architecture of
your system. In contrast, once you
create a SISO Design Task you cannot
add or delete blocks from your model.
Also, the Architecture tab in the SISO
Design Task node summarizes the
Simulink Blocks to Tune, Closed Loop
Input Signals, and Closed Loop Output
Signals.
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Similarities Differences

• Compensator Editor tab — The
SISO Design Tool lets you tune the
poles and zeros of your system. The
enhanced SISO Design Tool lets you
tune the poles, zeros, and parameters
of your system. For more information,
see Tuning Simulink Blocks in the
Compensator Editor.

• When you are satisfied with your
system's performance, the enhanced
SISO Design Tool lets you click Update
Simulink Block Parameters to write
the parameters back to your Simulink
model.

For additional information, see:

• “Creating a SISO Design Task” on page 4-112
• “SISO Design Tool” in the Control System Toolbox documentation

Design Operating Point Node

The Design Operating Point node is located inside the Design History node of the
Control and Estimation Tools Manager.
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The States pane describes the operating point the GUI used to linearize the model.
When creating the SISO Design Task node, you can use this pane to import a different
operating point and to populate the SISO Design Task node with a linear model
evaluated at the new operating point.

SISO Tool Options

To modify the precision of the numbers calculated by SISO Tool, click the SISO Design
Task node, and then select Tools >  Options. The SISOTool Options dialog box opens.
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If you select the Use full precision check box, the SISO Tool uses the full double-
precision data type when writing back to the Simulink block dialog box. If you clear this
check box, use Custom: n digits of precision to specify the precision you want.

For additional information, see “Creating a SISO Design Task” on page 4-112.
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Model Verification

• “Monitoring Linear System Characteristics in Simulink Models” on page 5-2
• “Defining a Linear System for Model Verification Blocks” on page 5-4
• “Verifiable Linear System Characteristics” on page 5-5
• “Model Verification at Default Simulation Snapshot Time” on page 5-6
• “Model Verification at Multiple Simulation Snapshots” on page 5-15
• “Model Verification Using Simulink Control Design and Simulink Verification Blocks”

on page 5-25



5 Model Verification

5-2

Monitoring Linear System Characteristics in Simulink Models

Simulink Control Design software provides Model Verification blocks to monitor time-
and frequency-domain characteristics of a linear system computed from a nonlinear
Simulink model during simulation.

Use these blocks to:

• Verify that the linear system characteristics of any nonlinear Simulink model,
including the following, remain within specified bounds during simulation:

• Continuous- or discrete-time models
• Multi-rate models
• Models with time delays, represented using exact delay or Padé approximation
• Discretized linear models computed from continuous-time models
• Continuous-time models computed from discrete-time models
• Resampled discrete-time models

The linear system can be Single-Input Single-Output (SISO) or Multi-Input Multi-
Output (MIMO).

• View specified bounds and bound violations on linear analysis plots.

Tip These blocks are same as the Linear Analysis Plots blocks except for different
default settings of the bound parameters.

• Save the computed linear system to the MATLAB workspace.

The verification blocks assert when the linear system characteristic does not satisfy a
specified bound, i.e., assertion fails. A warning message, reporting the assertion failure,
appears at the MATLAB prompt. When assertion fails, you can:

• Stop the simulation and bring that block into focus.
• Evaluate a MATLAB expression.

You can use these blocks with the Simulink Model Verification blocks to design complex
logic for assertion. For an example, see “Model Verification Using Simulink Control
Design and Simulink Verification Blocks” on page 5-25.
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If you have Simulink Verification and Validation software, you can use the Verification
Manager tool in the Signal Builder to construct simulation tests for your model. For an
example, see Verifying Frequency-Domain Characteristics of an Aircraft.

Note: These blocks do not support code generation and can only be used in Normal
simulation mode.

http://www.mathworks.com/products/simverification/
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Defining a Linear System for Model Verification Blocks

To assert that the linear system characteristics satisfy specified bounds, the Model
Verification blocks compute a linear system from a nonlinear Simulink model.

For the software to compute a linear system, you must specify:

• Linearization inputs and outputs

Linearization inputs and outputs define the portion of the model to linearize. A 
linearization input defines an input while a linearization output defines an output of
the linearized model. To compute a MIMO linear system, specify multiple inputs and
outputs.

• When to compute the linear system

You can compute the linear system and assert bounds at:

• Default simulation snapshot time. Typically, simulation snapshots are the times
when your model reaches steady state.

• Multiple simulation snapshots.
• Trigger-based simulation events

For more information, see the following examples:

• “Model Verification at Default Simulation Snapshot Time” on page 5-6
• “Model Verification at Multiple Simulation Snapshots” on page 5-15
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Verifiable Linear System Characteristics

The following table summarizes the linear system characteristics you can specify bounds
on and assert that the bounds are satisfied during simulation.

Block Plot Type Bounds on…

Check Bode Characteristics Bode Upper and lower Bode
magnitude

Check Gain and Phase
Margins

• Bode
• Nichols
• Nyquist
• Table

Gain and phase margins

Check Nichols
Characteristics

Nichols • Open-loop gain and phase
• Closed-loop peak gain

Check Pole-Zero
Characteristics

Pole-Zero Approximate second-order
characteristics, such as
settling time, percent
overshoot, damping ratio and
natural frequency, on the
pole locations

Check Singular Value
Characteristics

Singular Value Upper and lower singular
values

Check Linear Step Response
Characteristics

Step Response Step response characteristics

Specify the bounds in the Bounds tab of the block's Block Parameters dialog box or
programmatically. For more information, see the corresponding block reference pages.
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Model Verification at Default Simulation Snapshot Time

This example shows how to assert that bounds on the linear system characteristics of a
nonlinear Simulink model, computed at the default simulation snapshot time of 0, are
satisfied during simulation.

1 Open a nonlinear Simulink model. For example:

watertank

2 Open the Simulink Library Browser by selecting View > Library Browser in the
Simulink Editor.

3 Add a model verification block to the Simulink model.

a In the Simulink Control Design library, select Model Verification.
b Drag and drop a block, such as the Check Pole-Zero Characteristics block, into

the Simulink Editor.

The model now resembles the following figure.

4 Double-click the block to open the Block Parameters dialog box.
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To learn more about the block parameters, see the block reference pages.
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5 Specify the linearization input and output to compute the closed-loop poles and
zeros.

Tip If you have defined the linearization input and output in your Simulink model,

click  to automatically populate the Linearization inputs/outputs table with I/
Os from the model.

a To specify an input:

i
Click  adjacent to the Linearization inputs/outputs table.

The Block Parameters dialog expands to display a Click a signal in the
model to select it area.

ii In the Simulink model, click the output signal of the Desired Water
Level block to select it.

The Click a signal in the model to select it area updates to display the
selected signal.



 Model Verification at Default Simulation Snapshot Time

5-9

Tip You can select multiple signals at once in the Simulink model. All
selected signals appear in the Click a signal in the model to select it
area.

iii
Click  to add the signal to the Linearization inputs/outputs table.

b To specify an output:

i In the Simulink model, click the output signal of the Water-Tank System
block to select it.

The Click a signal in the model to select it area updates to display the
selected signal.
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ii
Click  to add the signal to the Linearization inputs/outputs table.

Note: To find the location in the Simulink model corresponding to a signal
in the Linearization inputs/outputs table, select the signal in the table

and click .
iii In the Configuration drop-down list of the Linearization inputs/

outputs table, select Output Measurement for watertank/Water-Tank
System: 1.
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Note: The I/Os include the feedback loop in the Simulink model. The
software computes the poles and zeros of the closed-loop system.

iv
Click  to collapse the Click a signal in the model to select it area.

6 Specify bounds for assertion. In this example, you use the default approximate
second-order bounds, specified in Bounds tab of the Block Parameters dialog box.

View the bounds on the pole-zero map by clicking Show Plot to open a plot window.
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7 Stop the simulation if assertion fails by selecting Stop simulation when assertion
fails in the Assertion tab.
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8 Click Apply to apply all changed settings to the block.
9

Simulate the model by clicking  in the plot window.

Alternatively, you can simulate the model from the Simulink Editor.

The software linearizes the portion of the model between the linearization input
and output at the default simulation time of 0, specified in Snapshot times block
parameter. When the software detects that a pole violates a specified bound, the
simulation stops. The Diagnostics Viewer opens reporting the block that asserts.

Click Open to highlight the block that asserts in the Simulink model.



5 Model Verification

5-14

The closed-loop pole and zero locations of the computed linear system appear as x
and o markings in the plot window. You can also view the bound violation in the
plot.
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Model Verification at Multiple Simulation Snapshots

This example shows how to:

• Add multiple bounds.
• Check that the linear system characteristics of a nonlinear Simulink model satisfy the

bounds at multiple simulation snapshots
• Modify bounds graphically
• Disable bounds during simulation

1 Open a nonlinear Simulink model. For example:

watertank

2 Open the Simulink Library Browser by selecting View > Library Browser in the
Simulink Editor.

3 Add a model verification block to the Simulink model.

a In the Simulink Control Design library, select Model Verification.

b Drag and drop a block, such as the Check Bode Characteristics block, into the
Simulink Editor.

The model now resembles the following figure.
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4 Double-click the block to open the Block Parameters dialog box.

To learn more about the block parameters, see the block reference pages.
5 Specify the linearization I/O points.

The linear system is computed for the Water-Tank System.

Tip If your model already contains I/O points, the block automatically detects these

points and displays them. Click  at any time to update the Linearization
inputs/outputs table with I/Os from the model.

a To specify an input:

i
Click  adjacent to the Linearization inputs/outputs table.

The Block Parameters dialog expands to display a Click a signal in the
model to select it area.
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Tip You can select multiple signals at once in the Simulink model. All
selected signals appear in the Click a signal in the model to select it
area.

ii In the Simulink model, click the output signal of the PID Controller
block to select it.

The Click a signal in the model to select it area updates to display the
selected signal.

iii
Click  to add the signal to the Linearization inputs/outputs table.
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b To specify an output:

i In the Simulink model, click the output signal of the Water-Tank System
block to select it.

The Click a signal in the model to select it area updates to display the
selected signal.

ii
Click  to add the signal to the Linearization inputs/outputs table.
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Note: To find the location in the Simulink model corresponding to a signal
in the Linearization inputs/outputs table, select the signal in the table

and click .
iii In the Configuration drop-down list of the Linearization inputs/

outputs table, select Open-loop Output for watertank/Water-Tank
System : 1.

The Linearization inputs/outputs table now resembles the following figure.

c
Click  to collapse the Click a signal in the model to select it area.

Tip Alternatively, before you add the Linear Analysis Plots block, right-click
the signals in the Simulink model and select Linear Analysis Points > Input
Perturbation and Linear Analysis Points > Open-loop Output. Linearization
I/O annotations appear in the model and the selected signals appear in the
Linearization inputs/outputs table.

6 Specify simulation snapshot times.

a In the Linearizations tab, verify that Simulation snapshots is selected in
Linearize on.

b In the Snapshot times field, type [0 1 5 10].
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7 Specify multiple bound segments for assertion in the Bounds tab of the Block
Parameters dialog box. In this example, enter the following lower magnitude bounds:

• Frequencies (rad/s) — {[0.001 0.003],[0.01 0.04]}
• Magnitudes (dB) — {[20 20],[15 15]}

Click Apply to apply the parameter changes to the block.

Click Show Plot to view the bounds on the Bode magnitude plot.
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8
Simulate the model by clicking  in the plot window.

Alternatively, you can simulate the model from the Simulink Editor.

The software linearizes the portion of the model between the linearization input and
output at the simulation times of 0,1, 5 and 10. When the software detects that the
linear system computed at times 0 and 1 violate a specified lower magnitude bound,
warning messages appear in the Diagnostic Viewer window. Click the link at the
bottom of the Simulink model to open this window. Click the link in the window to
view the details of the assertion.
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You can also view the bound violations on the plot window.

9 Modify a bound graphically. For example, to modify the upper magnitude bound
graphically:

a In the plot window, click the bound segment to select it and then drag it to the
desired location.
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b Click Update block to update the new values in the Bounds tab of the Block
Parameters dialog box.

10 Disable the lower bounds to exclude them from asserting. Clear the Include lower
magnitude bounds in assertion option in the Block Parameters dialog box. Then,
click Apply.

The lower bounds are now grey-out in the plot window, indicating that they are
excluded from assertion.
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11 Resimulate the model to check if bounds are satisfied.

The software satisfies the specified upper magnitude bound, and therefore the
software no longer reports an assertion failure.
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Model Verification Using Simulink Control Design and Simulink
Verification Blocks

This example shows how to use a combination of Simulink Control Design and Simulink
verification blocks, to assert that the linear system characteristics satisfy one of the
following bounds:

• Phase margin greater than 60 degrees
• Phase margin less than 60 degrees and the velocity less than or equal to 90% of the

cruise velocity.

1 Open the Simulink model of an aircraft.

scdmultiplechecks

The aircraft model is based on a long-haul passenger aircraft flying at cruising
altitude and speed. The aircraft starts with a full fuel load and follows a pre-specified
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8-hour velocity profile. The model is a simplified version of a velocity control loop,
which adjusts the fuel flow rate to control the aircraft velocity.

The model includes blocks to model:

• Fuel consumption and resulting changes in aircraft mass
• Nonlinear draft effects limiting aircraft velocity

Constants used in the model, such as the drag coefficient, are defined in the model
workspace and initialized from a script.

The v <= 0.9*vCruise and Assert that: PM >= 60 or if PM < 60 then
v <= 0.9*vCruise blocks are Check Static Upper Bound and Assertion blocks,
respectively, from the Simulink Model Verification library. In this example, you use
these blocks with the Check Gain and Phase Margins block to design a complex logic
for assertion.

2 View the linearization input, output and settings in the Linearizations tab of the
Check Gain and Phase Margins block parameters dialog box.
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The model has already been configured with:

• Linearization input and output for computing gain and phase margins
• Settings to compute the linear system

The software linearizes the loop seen by the Velocity Controller block every 30
minutes of simulated time and computes the gain and phase margins.

3 Specify phase margin bounds in the Bounds tab of the Check Gain and Phase
Margins block.
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In this example, the linearization input and output include the summation block
with negative feedback. Change the Feedback sign, used to compute the margin, to
positive feedback.

To view the phase margins to be computed later during simulation, specify Tabular
in Plot type, and click Show Plot.

4 Design assertion logic that causes the verification blocks to assert when the phase
margin is greater than 60 degrees or if the phase margin is less than 60 degrees, the
velocity is less than or equal to 90% the cruise velocity.

a In the Check Gain and Phase Margins Block Parameters dialog box, select
Output assertion signal and click Apply.

This action adds an output port z-1 to the block.
b Double-click the v <= 0.9*vCruise block and specify the block parameters, as

shown in the following figure. After setting the parameters, click Apply.
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These parameters configure the block to:

• Check if the aircraft velocity exceeds the cruise velocity by 0.9 times
• Add an output port to the block

c Connect the Check Gain and Phase Margins, v <= 0.9*vCruise and Assert
that: PM >= 60 or if PM < 60 then v <= 0.9*vCruise blocks, as
shown in the following figure.
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This connection causes the Assert that: PM >= 60 or if PM < 60
then v <= 0.9*vCruise block to assert and stop the simulation if the phase
margin is less than 60 degrees and the velocity is greater than 90% of the cruise
velocity.

Alternatively, you can type scdmultiplechecks_final at the MATLAB prompt to
open a Simulink model already configured with these settings.

5 Simulate the model by selecting Simulation > Run in the Simulink Editor.

During simulation:

• The v <= 0.9*vCruise block asserts multiple times.
• The Check Gain and Phase Margins block asserts two times. You can view the

phase margins that violate the bound in the plot window.
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• The Assert that: PM >= 60 or if PM < 60 then v <= 0.9*vCruise
does not encounter the assertion condition. Therefore, the simulation does not
stop.

6 Click the link at the bottom of the Simulink model to open the Diagnostic Viewer
window.
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When a block asserts, warnings appear in this window. You can view the details of
the assertions by clicking the link in this window.
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addoutputspec
Add output specification to operating point specification

Syntax

opnew=addoutputspec(op,'block',portnumber)

Alternatives

As an alternative to the addoutputspec function, add output specifications with the
Simulink Control Design GUI. See “Steady-State Operating Point to Meet Output
Specification” on page 1-20.

Description

opnew=addoutputspec(op,'block',portnumber) adds an output specification for a
Simulink model to an existing operating point specification, op, created with operspec.
The signal being constrained by the output specification is indicated by the name of the
block, 'block', and the port number, portnumber, that it originates from.

You can edit the output specification within the new operating point specification object,
opnew, to include the actual constraints or specifications for the signal. Use the new
operating point specification object with the function findop to find operating points for
the model.

This function automatically compiles the Simulink model, given in the property Model of
op, to find the block's output portwidth.

Examples

Create an operating point specification for the model magball.

op=operspec('magball')
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This specification returns the object op. Note that there are no outports in this model and
no outputs in the object op.

 Operating Specification for the Model magball.

 (Time-Varying Components Evaluated at time t=0)

States: 

----------

(1.) magball/Controller/PID Controller/Filter

      spec:  dx = 0,  initial guess:             0

(2.) magball/Controller/PID Controller/Integrator

      spec:  dx = 0,  initial guess:            14

(3.) magball/Magnetic Ball Plant/Current

      spec:  dx = 0,  initial guess:             7

(4.) magball/Magnetic Ball Plant/dhdt

      spec:  dx = 0,  initial guess:             0

(5.) magball/Magnetic Ball Plant/height

      spec:  dx = 0,  initial guess:          0.05

 

Inputs: None 

----------

 

Outputs: None 

----------

To add an output specification to the signal between the Controller block and the
Magnetic Ball Plant block, use the function addoutputspec.

newop=addoutputspec(op,'magball/Controller',1)

This function adds the output specification is added to the operating point specification
object.

  Operating Specification for the Model magball.

 (Time-Varying Components Evaluated at time t=0)

States: 

----------

(1.) magball/Controller/PID Controller/Filter

      spec:  dx = 0,  initial guess:             0

(2.) magball/Controller/PID Controller/Integrator

      spec:  dx = 0,  initial guess:            14

(3.) magball/Magnetic Ball Plant/Current

      spec:  dx = 0,  initial guess:             7

(4.) magball/Magnetic Ball Plant/dhdt
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      spec:  dx = 0,  initial guess:             0

(5.) magball/Magnetic Ball Plant/height

      spec:  dx = 0,  initial guess:          0.05

 

Inputs: None 

----------

 

Outputs: 

----------

(1.) magball/Controller

      spec:  none

Edit the output specification to constrain this signal to be 14.

newop.Outputs(1).Known=1, newop.Outputs(1).y=14

The final output specification is displayed.

 Operating Specification for the Model magball.

 (Time-Varying Components Evaluated at time t=0)

States: 

----------

(1.) magball/Controller/PID Controller/Filter

      spec:  dx = 0,  initial guess:             0

(2.) magball/Controller/PID Controller/Integrator

      spec:  dx = 0,  initial guess:            14

(3.) magball/Magnetic Ball Plant/Current

      spec:  dx = 0,  initial guess:             7

(4.) magball/Magnetic Ball Plant/dhdt

      spec:  dx = 0,  initial guess:             0

(5.) magball/Magnetic Ball Plant/height

      spec:  dx = 0,  initial guess:          0.05

 

Inputs: None 

----------

 

Outputs: 

----------

(1.) magball/Controller

      spec:  y = 0             

See Also
findop | operspec | operpoint
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copy
Copy operating point or operating point specification

Syntax

op_point2=copy(op_point1)

op_spec2=copy(op_spec1)

Description

op_point2=copy(op_point1) returns a copy of the operating point object
op_point1. You can create op_point1 with the function operpoint.

op_spec2=copy(op_spec1)  returns a copy of the operating point specification object
op_spec1. You can create op_spec1 with the function operspec.

Note The command op_point2=op_point1 does not create a copy of op_point1 but
instead creates a pointer to op_point1. In this case, any changes made to op_point2
are also made to op_point1.

Examples

Create an operating point object for the model, magball.

opp=operpoint('magball')

The operating point is displayed.

 Operating Point for the Model magball.

 (Time-Varying Components Evaluated at time t=0)

States: 

----------

(1.) magball/Controller/PID Controller/Filter

      x: 0            
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(2.) magball/Controller/PID Controller/Integrator

      x: 14           

(3.) magball/Magnetic Ball Plant/Current

      x: 7            

(4.) magball/Magnetic Ball Plant/dhdt

      x: 0            

(5.) magball/Magnetic Ball Plant/height

      x: 0.05         

 

Inputs: None 

----------

Create a copy of this object, opp.

new_opp=copy(opp)    

An exact copy of the object is displayed.

Operating Point for the Model magball.

 (Time-Varying Components Evaluated at time t=0)

States: 

----------

(1.) magball/Controller/PID Controller/Filter

      x: 0            

(2.) magball/Controller/PID Controller/Integrator

      x: 14           

(3.) magball/Magnetic Ball Plant/Current

      x: 7            

(4.) magball/Magnetic Ball Plant/dhdt

      x: 0            

(5.) magball/Magnetic Ball Plant/height

      x: 0.05         

 

Inputs: None 

----------

See Also
operpoint | operspec



 findop

6-7

findop
Steady-state operating point from specifications (trimming) or simulation

Syntax

[op,opreport] = findop(sys,opspec)

[op,opreport] = findop(sys,opspec,options)

op = findop(sys,tsnapshot)

Description

[op,opreport] = findop(sys,opspec) returns the steady-state operating point
of the model that meets the specifications opspec. The Simulink model must be open.
If opspec is a vector of operating points specifications, findop returns a vector of
corresponding operating points.

[op,opreport] = findop(sys,opspec,options) searches for the operating point of
the model using additional optimization algorithm options specified by options.

op = findop(sys,tsnapshot) simulates the model and extracts operating points at
the simulation snapshot time instants (snapshots) tsnapshot.

Input Arguments

sys

Simulink model name, specified as a string inside single quotes (' ').

Default:

opspec

Operating point specification object for the model sys, specified using operspec.

opspec can also be a vector of operating point specification objects. If opspec is a vector
of operating points specifications, findop returns a vector of corresponding operating
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points. In this case, findop needs to compile the model only once. Using a vector of
operating points allows you to find multiple trimmed operating points without the
overhead of compiling the model for each trimming computation.

Default:

options

Algorithm options, specified using findopOptions.

Default:

tsnapshot

Simulation snapshot time instants when to extract the operating point of the model,
specified as a scalar or vector.

Output Arguments

op

Operating point object.

After creating the operating point object, you can modify the operating point states and
input levels. For example, op.States(1).x stores the state values of the first model
state, and op.Inputs(1).u stores the input level of the first inport block.

The operating point object has these properties:

• Model — Simulink model name. String.
• States — State operating points of the Simulink model. Vector of data structures,

where each data structure represents the supported states of one Simulink block.
(For a list of supported states for operating point objects, see “Simulink Model States
Included in Operating Point Object”.)

Each States structure has these fields:

x Simulink block state values, specified as a vector of states.
Ts (Only for discrete-time states) Sample time and offset of

each Simulink block state, specified as a vector.
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Description Block state description, specified as a string.
Nx (read only) Number of states in the Simulink block.
Block Simulink block name.
SampleType State time rate can have the values:

• 'CSTATE' — Continuous-time state
• 'DSTATE' — Discrete-time state.

inReferencedModel Determine whether the sates is inside a reference model:

• 1 — State is inside a reference model.
• 0 — State is in the current model file.

• Inputs — Input levels at the operating point. Vector of data structures, where
each data structure represents the input levels of one root-level inport block in the
Simulink block. Each Inputs data structure has these fields:

u Inport block input levels at the operating point, specified
as a vector of input levels.

Description Inport block input description, specified as a string.
Block Inport block name.
PortWidth Number of inport block signals.

• Time — Time instants for evaluating the time-varying functions in the model.

If opspec is a vector of operating point specification objects, then op is a vector of
corresponding operating points.

opreport

Optimization results report object.

This report displays automatically even when you suppress the output using a semicolon.
You can avoid displaying the report by using findopOptions to set the DisplayReport
field in options to 'off'.

The opreport object has these properties:

• Model — Model property value of the op object.
• Inputs — Inputs property value of the op object.
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• Outputs — Outputs property value of the op object with the addition of yspec,
which is the desired y value.

• States — States property value of the op object with the addition of dx, which are
the state derivative values.

• Time — Time property value of the op object.
• TerminationString — Optimization termination condition, stored as a string.
• OptimizationOutput — Optimization algorithm results, returned as a structure

with these fields:

iterations Number of iterations performed during the optimization
funcCount Number of function evaluations performed during the

optimization
lssteplength Size of line search step relative to search direction (active-

set optimization algorithm only)
stepsize Displacement in the state vector at the final iteration

(active-set and interior-point optimization algorithms)
algorithm Optimization algorithm used
firstorderopt Measure of first-order optimality, for the trust-region-

reflective optimization algorithm; [ ] for other algorithms
constrviolation Maximum of constraint functions
message Exit message

For more information about the optimization algorithm, see the Optimization
Toolbox™ documentation.

Examples

Steady-State Operating Point (Trimming) From Specifications

This example shows how to use findop to compute an operating point of a model from
specifications.

1 Open Simulink model.

sys = 'watertank';
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load_system(sys);

2 Create operating point specification object.

opspec = operspec(sys)

By default, all model states are specified to be at steady state.

 Operating Specification for the Model watertank.

 (Time-Varying Components Evaluated at time t=0)

States: 

----------

(1.) watertank/PID Controller/Integrator

      spec:  dx = 0,  initial guess:             0

(2.) watertank/Water-Tank System/H

      spec:  dx = 0,  initial guess:             1

Inputs: None 

----------

Outputs: None 

----------

operspec extracts the default operating point of the Simulink model with two
states. The model does not have any root-level inport blocks and no root-level outport
blocks or output constraints.

3 Configure specifications for the first model state.

opspec.States(1).SteadyState = 1;

opspec.States(1).x = 2;

opspec.States(1).Min = 0;

The first state must be at steady state and have an initial value of 2 with a lower
bound of 0.

4 Configure specifications for the second model state.

opspec.States(2).Known = 1;

opspec.States(2).x = 10;

The second state sets the desired height of the water in the tank at 10. Configuring
the height as a known value keeps this value fixed when computing the operating
point.

5 Find the operating point that meets these specifications.
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[op,opreport] = findop(sys,opspec)

bdclose(sys);

opreport describes how closely the optimization algorithm met the specifications at
the end of the operating point search.

 Operating Report for the Model watertank.

 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.

States: 

----------

(1.) watertank/PID Controller/Integrator

      x:          1.26      dx:             0 (0)

(2.) watertank/Water-Tank System/H

      x:            10      dx:             0 (0)

Inputs: None 

----------

Outputs: None 

----------

dx indicates the time derivative of each state. The actual dx values of zero indicate
that the operating point is at steady state. The desired dx value is in parentheses.

Steady-State Operating Point to Meet Output Specification

This example shows how to specify an output constraint for computing the steady-state
operating point of a model.

1 Open Simulink model.

sys = 'scdspeed';

open_system(sys);

2 Create operating point specification object.

opspec = operspec(sys);

By default, all model states are specified to be at steady state.
3 Configure the output specification.

blk = [sys '/rad//s to rpm'];
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opspec = addoutputspec(opspec,blk,1);

opspec.Outputs(1).Known = true;

opspec.Outputs(1).y = 2000;

addoutputspec adds to the operating point specification an output specification
for the output of the block rad/s to rpm. This output specification, stored in
opspec.Outputs(1), allows you to specify a fixed output value for that block as
part of the operating point specification. Setting the Known attribute of the output
specification to true ensures that the fixed output level is a constraint in the
operating point search.

4 Find the operating point that meets the output specification.

op = findop(sys,opspec);

bdclose(sys);

 Operating Point Search Report:

---------------------------------

 Operating Report for the Model scdspeed.

 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.

States: 

----------

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar

      x:         0.544      dx:      2.66e-13 (0)

(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s

      x:           209      dx:     -8.48e-12 (0)

Inputs: 

----------

(1.) scdspeed/Throttle  perturbation

      u:       0.00382    [-Inf Inf]

Outputs: 

----------

(1.) scdspeed/rad//s to rpm

      y:         2e+03    (2e+03)

The search report shows that the operating point search was successful. op is an
operating point object that specifies a steady-state operating point for the model
scdspeed, in which the output of the rad/s to rpm block is 2000.
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Operating Points for Multiple Specification Sets

Find operating points for multiple operating point specifications with a single model
compilation.

Each time you call findop, the software compiles the Simulink model. To find operating
points for multiple specifications, you can give findop a vector of operating point
specifications. Then findop only compiles the model once.

1 Open Simulink model.

sys = 'scdspeed';

open_system(sys);

2 Create operating point specification object.

opspec1 = operspec(sys);

By default, all model states are specified to be at steady state.
3 Configure the output specification.

blk = [sys '/rad//s to rpm'];

opspec1 = addoutputspec(opspec1,blk,1);

opspec1.Outputs(1).Known = true;

opspec1.Outputs(1).y = 1500;

opspec1 specifies a stead-state operating point in which the output of the block
rad/s to rpm is fixed at 500.

Note: Alternatively, you can configure an operating point specification using the
Linear Analysis Tool and export the specification to the MATLAB workspace. See
“Import and Export Specifications For Operating Point Search” for more information.

4 Create and configure additional operating point specifications.

opspec2 = copy(opspec1);

opspec2.Outputs(1).y = 2000;

opspec3 = copy(opspec1);

opspec3.Outputs(1).y = 2500;

Using the copy command creates an independent operating point specification
that you can edit without changing opspec1. Here, the specifications opspec2 and
opspec3 are identical to opspec1, except for the target output level.
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5 Find the operating points that meet each of the three output specifications.

opspecs = [opspec1,opspec2,opspec3];

ops = findop(sys,opspecs);

bdclose(sys);

Pass the three operating point specifications to findop in the vector opspecs. When
you give findop a vector of operating point specifications, it finds all the operating
points with only one model compilation. ops is a vector of operating point objects for
the model scdspeed that correspond to the three specifications in the vector.

Initialize Steady-State Operating Point Search Using Simulation

This example shows how to use findop to compute an operating point of a model from
specifications, where the initial state values are extracted from a simulation snapshot.

1 Open Simulink model.

sys = 'watertank';

load_system(sys);

2 Extract an operating point from simulation after 10 time units.

opsim = findop(sys,10);

3 Create operating point specification object.

By default, all model states are specified to be at steady state.

opspec = operspec(sys);

4 Configure initial values for operating point search.

opspec = initopspec(opspec,opsim);

5 Find the steady state operating point that meets these specifications.

[op,opreport] = findop(sys,opspec)

bdclose(sys);

opreport describes the optimization algorithm status at the end of the operating
point search.

 Operating Report for the Model watertank.

 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
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States: 

----------

(1.) watertank/PID Controller/Integrator

      x:          1.26      dx:             0 (0)

(2.) watertank/Water-Tank System/H

      x:            10      dx:     -1.1e-014 (0)

Inputs: None 

----------

Outputs: None 

----------

dx, which is the time derivative of each state, is effectively zero. This value of the
state derivative indicates that the operating point is at steady state.

Steady-State Operating Points at Simulation Snapshots

This example shows how to use findop to extract operating points of a model from
specifications snapshots.

1 Open Simulink model.

sys = 'magball';

load_system(sys);

2 Extract an operating point from simulation at 10 and 20 time units.

op = findop(sys,[10,20]);

3 Display the first operating point.

op(1)

 Operating Point for the Model magball.

 (Time-Varying Components Evaluated at time t=10)

States: 

----------

(1.) magball/Controller/PID Controller/Filter

      x: 5.47e-007    

(2.) magball/Controller/PID Controller/Integrator

      x: 14           

(3.) magball/Magnetic Ball Plant/Current

      x: 7            

(4.) magball/Magnetic Ball Plant/dhdt
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      x: 8.44e-008    

(5.) magball/Magnetic Ball Plant/height

      x: 0.05         

 

Inputs: None 

----------

4 Display the second operating point.

op(2)

 Operating Point for the Model magball.

 (Time-Varying Components Evaluated at time t=20)

States: 

----------

(1.) magball/Controller/PID Controller/Filter

      x: 2.07e-007    

(2.) magball/Controller/PID Controller/Integrator

      x: 14           

(3.) magball/Magnetic Ball Plant/Current

      x: 7            

(4.) magball/Magnetic Ball Plant/dhdt

      x: 3.19e-008    

(5.) magball/Magnetic Ball Plant/height

      x: 0.05         

 

Inputs: None 

----------

View Operating Point Object

This example shows how to use get to display the operating point states, inputs, and
outputs.

sys = 'watertank';

load_system(sys);

op = operpoint(sys)

get(op.States(1))

Synchronize Simulink Model Changes With Operating Point Specification

This example shows how to use update to update an existing operating point
specification object after you update the Simulink model.

1 Open Simulink model.
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sys = 'scdspeedctrl';

open_system(sys);

2 Create operating point specification object.

By default, all model states are specified to be at steady state.

opspec = operspec(sys);

3 In the Simulink Editor, double-click the Reference Filter block. Change the
Numerator of the transfer function to [100] and the Denominator to [1 20 100].
Click OK.

4 Find the steady state operating point that meets these specifications.

op = findop(sys,opspec)

This command results in an error because the changes to your model are not
reflected in your operating point specification object:

??? The model scdspeedctrl has been modified and the operating point
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object is out of date.  Update the object by calling the function

update on your operating point object.

5 Update the operating point specification object with changes to the model. Repeat
the operating point search.

opspec = update(opspec);

op = findop(sys,opspec)

bdclose(sys);

After updating the operating point specifications object, the optimization algorithm
successfully finds the operating point.

Alternatives

As an alternative to the findop command, find operating points using the Linear
Analysis Tool. See the following examples:

• “Steady-State Operating Points from State Specifications”
• “Steady-State Operating Point to Meet Output Specification”

More About

Steady-State Operating Point (Trim Condition)

A steady-state operating point of the model, also called equilibrium or trim condition,
includes state variables that do not change with time.

A model might have several steady-state operating points. For example, a hanging
pendulum has two steady-state operating points. A stable steady-state operating point
occurs when a pendulum hangs straight down. That is, the pendulum position does not
change with time. When the pendulum position deviates slightly, the pendulum always
returns to equilibrium; small changes in the operating point do not cause the system to
leave the region of good approximation around the equilibrium value.

An unstable steady-state operating point occurs when a pendulum points upward. As long
as the pendulum points exactly upward, it remains in equilibrium. However, when the
pendulum deviates slightly from this position, it swings downward and the operating
point leaves the region around the equilibrium value.
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When using optimization search to compute operating points for a nonlinear system, your
initial guesses for the states and input levels must be in the neighborhood of the desired
operating point to ensure convergence.

When linearizing a model with multiple steady-state operating points, it is important to
have the right operating point. For example, linearizing a pendulum model around the
stable steady-state operating point produces a stable linear model, whereas linearizing
around the unstable steady-state operating point produces an unstable linear model.

Tips

• Initialize operating point search at a simulation snapshot or a previously computed
operating point using initopspec.

• Linearize the model at the operating point op using linearize.

Algorithms

By default, findop uses the optimizer graddescent_elim. To use a different optimizer,
change the value of OptimizerType in options using findopOptions.

findop automatically sets these Simulink model properties for optimization:

• BufferReuse = 'off'

• RTWInlineParameters = 'on'

• BlockReductionOpt = 'off'

After the optimization completes, Simulink restores the original model properties.
• “Steady-State Operating Points (Trimming) from Specifications”
• “Steady-State Operating Points from Simulation”

See Also
initopspec | linearize | findopOptions | operspec | addoutputspec

Tutorials
• “Steady-State Operating Point (Trimming)”
• “Choosing Between Simulation Snapshot and Operating Point from Specifications”
• “Simulink Model States Included in Operating Point Object”
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findopOptions

Set options for finding operating points from specifications

Syntax

options = findopOptions

options = findopOptions(Name,Value)

Alternatives

As an alternative to findopOptions function, set options for finding operating points in
the Linear Analysis Tool.

Description

options = findopOptions returns the default operating point search options.

options = findopOptions(Name,Value) returns an option set with additional
options specified by one or more Name,Value pair arguments. Use this option set to
specify options for the findop command.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

findopOptions takes the following Name arguments:
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'OptimizerType'

Optimizer type used by the optimization algorithm of findop, specified as one of the
following strings:

• 'graddescent_elim' — Enforces an equality constraint to force the time
derivatives of states to be zero (dx/dt=0, x(k+1)=x(k)) and the output signals to be
equal to their specified ‘Known’ value. The optimizer fixes the states, x, and inputs, u,
that are marked as ‘Known’ in an operating point specification and then optimizes the
remaining variables.

• 'graddescent' — Enforces an equality constraint to force the time derivatives of
states to be zero (dx/dt=0, x(k+1)=x(k)) and the output signals to be equal to their
specified ‘Known’ value. findop also minimizes the error between the states, x, and
inputs, u, that are marked as ‘Known’ in an operating point specification. If there
are not any inputs or states marked as ‘Known’, findop attempts to minimize the
deviation between the initial guesses for x and u and their trimmed values.

• 'lsqnonlin' — Fixes the states, x, and inputs, u, that are marked as 'Known' in an
operating point specification and optimizes the remaining variables. The algorithm
then tries to minimize both the error in the time derivatives of the states (dx/dt=0,
x(k+1)=x(k)) and the error between the outputs and their specified 'Known' value.

• 'simplex' — Uses the same cost function as lsqnonlin with the direct search
optimization routine found in fminsearch.

For more information about these optimization algorithms, see fmincon and
fminsearch in the Optimization Toolbox documentation.

Default: 'graddescent_elim'

'OptimizationOptions'

Options for the optimization algorithm, specified as a structure. Create the structure
using the optimset command. For more information on these options, see the optimset
reference page.

'DisplayReport'

Flag indicating whether to display the operating point summary report, specified as
either 'off' or 'on'.

• 'on' — Display the operating point summary report in the MATLAB command
window when running findop.
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• 'off' — Suppress display of the summary report.

Default: 'on'

Output Arguments

options

Option set containing the specified options for findop.

Examples

Create Options Set for Operating Point Search

Create an options set for operating point search that sets the optimizer type to gradient
descent and suppresses the display output of findop.

options = findopOptions('OptimizerType','graddescent',...

                        'Display','off');

                       

Alternatively, use dot notation to set the values of options.

options = findopOptions;

options.OptimizerType = 'graddescent';

options.Display = 'off';

See Also
| findop
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frest.Chirp
Package: frest

Swept-frequency cosine signal

Syntax
input = frest.Chirp(sys)

input = frest.Chirp('OptionName',OptionValue)

Description
input = frest.Chirp(sys) creates a swept-frequency cosine input signal based on
the dynamics of a linear system sys.

input = frest.Chirp('OptionName',OptionValue) creates a swept-frequency
cosine input signal using the options specified by comma-separated name/value pairs.

To view a plot of your input signal, type plot(input). To obtain a timeseries for your
input signal, use the generateTimeseries command.

Input Arguments
sys

Linear system for creating a chirp signal based on the dynamic characteristics of this
system. You can specify the linear system based on known dynamics using tf, zpk, or
ss. You can also obtain the linear system by linearizing a nonlinear system.

The resulting chirp signal automatically sets these options based on the linear system:

• 'FreqRange' are the frequencies at which the linear system has interesting
dynamics.

• 'Ts' is set to avoid aliasing such that the Nyquist frequency of the signal is five
times the upper end of the frequency range.

• 'NumSamples' is set such that the frequency response estimation includes the lower
end of the frequency range.
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Other chirp options have default values.

'OptionName',OptionValue

Signal characteristics, specified as comma-separated pairs of option name string and the
option value.

Option Name Option Value

'Amplitude' Signal amplitude.

Default: 1e-5
'FreqRange' Signal frequencies, specified as either:

• Two-element vector, for example [w1 w2]
• Two-element cell array, for example {w1 w2}

Default: [1,1000]
'FreqUnits' Frequency units:

• 'rad/s'—Radians per second
• 'Hz'—Hertz

Changing frequency units does not impact frequency
response estimation.

Default: 'rad/s'
'Ts' Sample time of the chirp signal in seconds. The default

setting avoids aliasing.

Default: 2

5

p

* max( )FreqRange

'NumSamples' Number of samples in the chirp signal. Default setting
ensures that the estimation includes the lower end of the
frequency range.

Default: 4p

Ts FreqRange*min( )
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Option Name Option Value

'SweepMethod' Method for evolution of instantaneous frequency:

• 'linear' (default)—Specifies the instantaneous
frequency sweep fi(t):

f t f t where f f ti f( ) ( ) /= + = -0 1 0b b

β ensures that the signal maintains the desired
frequency breakpoint f1 at final time tf.

f

t

f

t

f1 > f2 f1 < f2

• 'logarithmic'—Specifies the instantaneous
frequency sweep fi(t) given by

f t f where
f

f
i
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• 'quadratic'—Specifies the instantaneous
frequency sweep fi(t):

f t f t where f f ti i( ) ( ) /= + = -0
2

1 0
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Option Name Option Value

Also specify the shape of the quadratic using the
'Shape' option.

'Shape' Use when you set 'SweepMethod' to 'quadratic'
to describe the shape of the parabola in the positive
frequency axis:

• 'concave'—Concave quadratic sweeping shape.

f

t

f

t

f1 > f2 f1 < f2

• 'convex'—Convex quadratic sweeping shape.

f

t

f

t

f1 > f2 f1 < f2

'InitialPhase' Initial phase of the Chirp signal in degrees.

Default: 270

Examples

Create a chirp input signal:

input = frest.Chirp('Amplitude',1e-3,'FreqRange',[10 500],'NumSamples',20000)
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More About
• “Creating Input Signals for Estimation”
• “Estimate Frequency Response (MATLAB Code)”
• “Estimate Frequency Response Using Linear Analysis Tool”

See Also
frest.Sinestream | frest.Random | frestimate | generateTimeseries |
getSimulationTime
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frest.createFixedTsSinestream

Package: frest

Sinestream input signal with fixed sample time

Syntax

input = frest.createFixedTsSinestream(ts)

input = frest.createFixedTsSinestream(ts,{wmin wmax})

input = frest.createFixedTsSinestream(ts,w)

input = frest.createFixedTsSinestream(ts,sys)

input = frest.createFixedTsSinestream(ts,sys,{wmin wmax})

input = frest.createFixedTsSinestream(ts,sys,w)

Description

input = frest.createFixedTsSinestream(ts) creates sinestream input signal in
which each frequency has the same fixed sample time ts in seconds. The signal has 30

frequencies between 1 and ωs, where w
p

s

s
t

=

2  is the sample rate in radians per second.

The software adjusts the SamplesPerPeriod option to ensure that each frequency has
the same sample time. Use when your Simulink model has linearization input I/Os on
signals with discrete sample times.

input = frest.createFixedTsSinestream(ts,{wmin wmax}) creates sinestream
input signal with up to 30 frequencies logarithmically spaced between wmin and wmax in
radians per second.

input = frest.createFixedTsSinestream(ts,w) creates sinestream input signal
with frequencies w, specified as a vector of frequency values in radians per second. The

values of w must satisfy w
Nts

=
2p  for integer N such that the sample rate w

p

s

s
t

=

2  is an

integer multiple of each element of w.
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input = frest.createFixedTsSinestream(ts,sys) creates sinestream input
signal with a fixed sample time ts. The signal's frequencies, settling periods, and
number of periods automatically set based on the dynamics of a linear system sys.

input = frest.createFixedTsSinestream(ts,sys,{wmin wmax}) creates
sinestream input signal with up to 30 frequencies logarithmically spaced between wmin
and wmax in radians per second.

input = frest.createFixedTsSinestream(ts,sys,w) creates sinestream input
signal at frequencies w, specified as a vector of frequency values in radians per second.

The values of w must satisfy w
Nts

=
2p  for integer N such that the sample rate ts is an

integer multiple of each element of w.

Examples

Create a sinusoidal input signal with the following characteristics:

• Sample time of 0.02 sec
• Frequencies of the sinusoidal signal are between 1 rad/s and 10 rad/s

input = frest.createFixedTsSinestream(0.02,{1, 10});

More About
• “Creating Input Signals for Estimation”
• “Estimate Frequency Response (MATLAB Code)”
• “Estimate Frequency Response Using Linear Analysis Tool”

See Also
frest.Sinestream | frestimate
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frest.createStep
Package: frest

Step input signal

Syntax

input = frest.createStep('OptionName',OptionValue)

Description

input = frest.createStep('OptionName',OptionValue) creates a step input
signal as a MATLAB timeseries object using the options specified by comma-separated
name/value pairs.

Plot your input signal using plot(input).

Input Arguments

'OptionName',OptionValue

Signal characteristics, specified as comma-separated pairs of option name string and the
option value.

Option Name Option Value

'Ts' Sample time of the step input in seconds.
Default: 1e-3

'StepTime' Time in seconds when the output jumps from 0 to the
StepSize parameter.
Default: 1

'StepSize' Value of the step signal after time reaches and exceeds
the StepTime parameter.
Default: 1



6 Alphabetical List

6-32

Option Name Option Value

'FinalTime Final time of the step input signal in seconds.
Default: 10

Examples

Create step signal:

input = frest.createStep('StepTime',3,'StepSize',2)

More About
• “Creating Input Signals for Estimation”
• “Estimate Frequency Response (MATLAB Code)”
• “Estimate Frequency Response Using Linear Analysis Tool”

See Also
frest.simCompare | frestimate
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frest.findDepend
Package: frest

List of model path dependencies

Syntax

dirs = frest.findDepend(model)

Description

dirs = frest.findDepend(model) returns paths containing Simulink model
dependencies required for frequency response estimation using parallel computing.
model is the Simulink model to estimate. dirs is a cell array, where each element
is a path string. dirs is empty when frest.findDepend does not detect any model
dependencies. Append paths to dirs when the list of paths is empty or incomplete.

frest.findDepend does not return a complete list of model dependency paths when the
dependencies are undetectable.

Examples

Specify model path dependencies for parallel computing:
% Copy referenced model to temporary folder.

pathToLib = scdpathdep_setup;   

% Add folder to search path.

addpath(pathToLib);

% Open Simulink model.

mdl = 'scdpathdep';

open_system(mdl);

% Get model dependency paths.

dirs = frest.findDepend(mdl)

% The resulting path is on a local drive, C:/.

% Replace C:/ with valid network path accessible to remote workers.

dirs = regexprep(dirs,'C:/','\\\\hostname\\C$\\')
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% Enable parallel computing and specify the model path dependencies.

options = frestimateOptions('UseParallel','on','ParallelPathDependencies',dirs)

More About
• “Speeding Up Estimation Using Parallel Computing”
• “Scope of Dependency Analysis”

See Also
frestimate
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frest.findSources
Package: frest

Identify time-varying source blocks

Syntax

blocks = frest.findSources(model)

blocks = frest.findSources(model,io)

Description

blocks = frest.findSources(model) finds all time-varying source blocks in the
signal path of any linearization output point marked in the Simulink model model.

blocks = frest.findSources(model,io) finds all time-varying source blocks in
the signal path of any linearization output point specified in the array of linear analysis
points io.

Input Arguments

model

String containing the name, in single quotes, of the Simulink model in which you are
identifying time-varying source blocks for frequency response estimation.

io

Array of linearization I/O points.

The elements of io are linearization I/O objects that you create with getlinio or linio.
frest.findSources uses only the output points to locate time-varying source blocks
that can interfere with frequency response estimation. See “Algorithms” on page 6-40
for more information.
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Output Arguments

blocks

Array of Simulink.BlockPath objects identifying the block paths of all time-varying
source blocks in model that can interfere with frequency response estimation. The blocks
argument includes time-varying source blocks inside subsystems and normal-mode
referenced models.

If you provide io, blocks contains all time-varying source blocks contributing to the signal
at the output points in io.

If you do not provide io, blocks contains all time-varying source blocks contributing to the
signal at the output points marked in model.

Examples

Estimate the frequency response of a model having time-varying source blocks. This
example shows the use of frest.findSources to identify time-varying source
blocks that interfere with frequency response estimation. You can also see the use of
BlocksToHoldConstant option of frestimateOptions to disable time-varying source
blocks in the estimation.

Load the model scdspeed_ctrlloop.

mdl = 'scdspeed_ctrlloop';

open_system(mdl)

% Convert referenced model to normal mode for accuracy 

set_param('scdspeed_ctrlloop/Engine Model',...

                    'SimulationMode','Normal');

First, view the effects of time-varying source blocks on frequency response estimation. To
do so, perform the estimation without disabling time-varying source blocks.

In this example, linearization I/O points are already defined in the model. Use the
getlinio command to get the I/O points for frestimate.

io = getlinio(mdl)

Define a sinestream signal and compute the estimated frequency response sysest.
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in = frest.Sinestream('Frequency',logspace(1,2,10),...

              'NumPeriods',30,'SettlingPeriods',25);

[sysest,simout] = frestimate(mdl,io,in);

Perform exact linearization, and compare to the estimated response.

sys = linearize(mdl,io);

bodemag(sys,sysest,'r*')

The estimated frequency response does not match the exact linearization. The mismatch
occurs because time-varying source blocks in the model prevent the response from
reaching steady state.

Find the time-varying blocks using frest.findSources.
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srcblks = frest.findSources(mdl);

srcblks is an array of block paths corresponding to the time-varying source blocks in
the model. To examine the result, index into the array.

For example, entering

srcblks(2)

returns the result

ans = 

  Simulink.BlockPath

  Package: Simulink

  Block Path:

    'scdspeed_ctrlloop/Engine Model'

      'scdspeed_plantref/Drag Torque/Step1'

Now you can estimate the frequency response without the contribution of the
time-varying source blocks. To do so, set the BlocksToHoldConstant option of
frestimateOptions equal to srcblks, and run the estimation.

opts = frestimateOptions

opts.BlocksToHoldConstant = srcblks

% Run frestimate again with blocks disabled

 [sysest2,simout2] = frestimate(mdl,io,in,opts);

The frequency response estimate now provides a good match to the exact linearization
result.

bodemag(sys,sysest2,'r*')
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Alternatives

You can use the Simulink Model Advisor to determine whether time-varying source
blocks exist in the signal path of output linear analysis points in your model. To do
so, use the Model Advisor check “Identify time-varying source blocks interfering with
frequency response estimation.” For more information about using the Model Advisor, see
“Run Model Checks” in the Simulink User's Guide.
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More About

Tips

• Use frest.findSources to identify time-varying source blocks that can interfere
with frequency response estimation. To disable such blocks to estimate frequency
response, set the BlocksToHoldConstant option of frestimateOptions
equal to blocks or a subset of blocks. Then, estimate the frequency response using
frestimate.

• Sometimes, model includes referenced models containing source blocks in the signal
path of a linearization output point. In such cases, set the referenced models to
normal simulation mode to ensure that frest.findSources locates them. Use the
set_param command to set SimulationMode of any referenced models to Normal
before running frest.FindSources.

Algorithms

To locate time-varying source blocks that can interfere with frequency response
estimation, frest.findSources begins at each linearization output point in the model.
From each output point, the algorithm traces every signal path backward block by block.
The algorithm reports any source block (a block with no input port) it discovers, unless
that source block is a Constant or Ground block.

The frest.findSources algorithm traces every signal path that can affect the signal
value at each linearization output point in the model. The paths traced include:

• Signal paths inside virtual and nonvirtual subsystems.
• Signal paths inside normal-mode referenced models. Set all referenced models to

normal simulation mode before using frest.findSources to ensure that the
algorithm identifies source blocks within the referenced models.

• Signals routed through From and Goto blocks, or through Data Store Read and Data
Store Write blocks.

• Signals routed through switches. The frest.findSources algorithm assumes
that any pole of a switch can be active during frequency response estimation. The
algorithm therefore follows the signal back through all switch inputs.

For example, consider the model scdspeed_ctrlloop. This model has one linearization
output point, located at the output of the Sum block labeled Speed Output. (The
frest.findSources algorithm ignores linearization input points.) Before running
frest.findSources, convert the referenced model to normal simulation mode:
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set_param('scdspeed_ctrlloop/Engine Model',...

                       'SimulationMode','Normal');

You can now run frest.findSources to identify the time-varying source blocks using
the linearization output point defined in the model.

 srcblks = frest.findSources('scdspeed_ctrlloop');

The algorithm begins at the output point and traces back through the Sum block Speed
Output. One input to Speed Output is the subsystem External Disturbance. The
algorithm enters the subsystem, finds the source block labeled Step Disturbance, and
reports that block.

The Sum block Speed Output has another input, which the algorithm traces back into
the referenced model Engine Model. Engine Model contains several subsystems, and
the algorithm traces the signal through these subsystems to identify any time-varying
source blocks present.
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For example, the Combustion subsystem includes the From block marked delta
that routes the signal from the Spark Advance source. Because Spark Advance is a
constant source block, however, the algorithm does not report the presence of the block.

The algorithm continues the trace until all possible signal paths contributing to the
signal at each linearization output point are examined.
• “Effects of Time-Varying Source Blocks on Frequency Response Estimation”

See Also
frestimate | frestimateOptions
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frest.Random
Package: frest

Random input signal for simulation

Syntax

input = frest.Random('OptionName',OptionValue)

input = frest.Random(sys)

Description

input = frest.Random('OptionName',OptionValue) creates the Random input
signal using the options specified by comma-separated name/value pairs.

input = frest.Random(sys) creates a Random input signal based on the dynamics of
a linear system sys.

To view a plot of your input signal, type plot(input). To obtain a timeseries for your
input signal, use the generateTimeseries command.

Input Arguments

sys

Linear system for creating a random signal based on the dynamic characteristics of this
system. You can specify the linear system based on known dynamics using tf, zpk, or
ss. You can also obtain the linear system by linearizing a nonlinear system.

The resulting random signal automatically sets these options based on the linear system:

• Ts is set such that the Nyquist frequency of the signal is five times the upper end of
the frequency range to avoid aliasing issues.

• NumSamples is set such that the frequency response estimation includes the lower
end of the frequency range.



6 Alphabetical List

6-44

Other random options have default values.

'OptionName',OptionValue

Signal characteristics, specified as comma-separated pairs of option name string and the
option value.

Option Name Option Value

'Amplitude' Signal amplitude.
Default: 1e-5

'Ts' Sample time of the chirp signal in seconds.
Default: 1e-3

'NumSamples' Number of samples in the Random signal.
Default: 1e4

'Stream' Random number stream you create using the MATLAB
command RandStream. The state of the stream you specify
stores with the input signal. This stored state allows the
software to return the same result every time you use
generateTimeseries and frestimate with the input signal.
Default: Default stream of the MATLAB session

Examples

Create a Random input signal with 1000 samples taken at 100 Hz and amplitude of 0.02:
input = frest.Random('Amplitude',0.02,'Ts',1/100,'NumSamples',1000);

Create a Random input signal using multiplicative lagged Fibonacci generator random
stream:
% Specify the random number stream

stream = RandStream('mlfg6331_64','Seed',0);

% Create the input signal

input = frest.Random('Stream',stream);

More About
• “Creating Input Signals for Estimation”
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• “Estimate Frequency Response (MATLAB Code)”
• “Estimate Frequency Response Using Linear Analysis Tool”

See Also
frest.Sinestream | frest.Random  | frestimate | generateTimeseries |
getSimulationTime
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frest.simCompare
Package: frest

Plot time-domain simulation of nonlinear and linear models

Syntax

frest.simCompare(simout,sys,input)

frest.simCompare(simout,sys,input,x0)

[y,t] = frest.simCompare(simout,sys,input)

[y,t,x] = frest.simCompare(simout,sys,input,x0)

Description

frest.simCompare(simout,sys,input) plots both

• Simulation output, simout, of the nonlinear Simulink model

You obtain the output from the frestimate command.
• Simulation output of the linear model sys for the input signal input

The linear simulation results are offset by the initial output values in the simout
data.

frest.simCompare(simout,sys,input,x0) plots the frequency response simulation
output and the simulation output of the linear model with initial state x0. Because you
specify the initial state, the linear simulation result is not offset by the initial output
values in the simout data.

[y,t] = frest.simCompare(simout,sys,input) returns the linear simulation
output response y and the time vector t for the linear model sys with the input signal
input. This syntax does not display a plot. The matrix y has as many rows as time
samples (length(t)) and as many columns as system outputs.

[y,t,x] = frest.simCompare(simout,sys,input,x0) also returns the state
trajectory x for the linear state space model sys with initial state x0.
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Examples

Compare a time-domain simulation of the Simulink watertank model and its linear
model representation:

% Create input signal for simulation

input = frest.createStep('FinalTime',100);

% Open the Simulink model

watertank

% Specify the operating point for the estimation

watertank_spec = operspec('watertank');

op = findop('watertank',watertank_spec)

% Specify portion of model to estimate

io(1)=linio('watertank/PID Controller',1,'input');

io(2)=linio('watertank/Water-Tank System',1,'output');

% Estimate the frequency response of the watertank model

[sysest,simout] = frestimate('watertank',op,io,input)

sys = linearize('watertank',op,io);

frest.simCompare(simout,sys,input);

The software returns the following plot.
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See Also
frestimate | frest.simView
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frest.simView
Package: frest

Plot frequency response model in time- and frequency-domain

Syntax
frest.simView(simout,input,sysest)

frest.simView(simout,input,sysest,sys)

Description
frest.simView(simout,input,sysest) plots the following frequency response
estimation results:

• Time-domain simulation simout of the Simulink model
• FFT of time-domain simulation simout
• Bode of estimated system sysest

This Bode plot is available when you create the input signal using
frest.Sinestream or frest.Chirp. In this plot, you can interactively select
frequencies or a frequency range for viewing the results in all three plots.

You obtain simout and sysest from the frestimate command using the input signal
input.

frest.simView(simout,input,sysest,sys) includes the linear system sys in the
Bode plot when you create the input signal using frest.Sinestream or frest.Chirp.
Use this syntax to compare the linear system to the frequency response estimation
results.

Examples
Estimate the closed-loop of the watertank Simulink model and analyze the results:
% Open the Simulink model

watertank
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% Specify portion of model to linearize and estimate

io(1)=linio('watertank/PID Controller',1,'input');

io(2)=linio('watertank/Water-Tank System',1,'output');

% Specify the operating point for the linearization and estimation

watertank_spec = operspec('watertank');

op = findop('watertank',watertank_spec);

% Create input signal for simulation

input = frest.Sinestream('Frequency',logspace(-1,2,10));

% Estimate the frequency response of the watertank model

[sysest,simout] = frestimate('watertank',op,io,input);

% Analyze the estimation results

frest.simView(simout,input,sysest)

More About
• “Analyzing Estimated Frequency Response”
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• “Troubleshooting Frequency Response Estimation”

See Also
frestimate | frest.simCompare
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frest.Sinestream
Package: frest

Signal containing series of sine waves

Syntax
input = frest.Sinestream(sys)

input = frest.Sinestream('OptionName',OptionValue)

Description
input = frest.Sinestream(sys) creates a signal with a series of sinusoids based on
the dynamics of a linear system sys.

input = frest.Sinestream('OptionName',OptionValue) creates a signal with a
series of sinusoids, where each sinusoid frequency lasts for a specified number of periods,
using the options specified by comma-separated name/value pairs.

To view a plot of your input signal, type plot(input). To obtain a timeseries for your
input signal, use the generateTimeseries command.

Input Arguments

sys

Linear system for creating a sinestream signal based on the dynamic characteristics of
this system. You can specify the linear system based on known dynamics using tf, zpk,
or ss. You can also obtain the linear system by linearizing a nonlinear system.

The resulting sinestream signal automatically sets these options based on the linear
system:

• 'Frequency' are the frequencies at which the linear system has interesting
dynamics.

• 'SettlingPeriods' is the number of periods it takes the system to reach steady
state at each frequency in 'Frequency'.
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• 'NumPeriods' is (3 + SettlingPeriods) to ensure that each frequency excites the
system at specified amplitude for at least three periods.

• For discrete systems only, 'SamplesPerPeriod' is set such that all frequencies
have the same sample time as the linear system.

Other sinestream options have default values.

'OptionName',OptionValue

Signal characteristics, specified as comma-separated pairs of option name string and the
option value.

Option Name Option Value

'Frequency' Signal frequencies, specified as either a scalar or a vector of
frequency values.
Default: logspace(1,3,50)

'Amplitude' Signal amplitude at each frequency, specified as either:

• Scalar to set all frequencies to same value
• Vector to set each frequencies to a different value

Default: 1e-5
'SamplesPerPeriod' Number of samples for each period for each signal frequency,

specified as either:

• Scalar to set all frequencies to same value
• Vector to set each frequencies to a different value

Default: 40
'FreqUnits' Frequency units:

• 'rad/s'—Radians per second
• 'Hz'— Hertz

Default: 'rad/s'
'RampPeriods' Number of periods for ramping up the amplitude of each sine

wave to its maximum value, specified as either:

• Scalar to set all frequencies to same value
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Option Name Option Value

• Vector to set each frequencies to a different value

Use this option to ensure a smooth response when your input
amplitude changes.
Default: 0

RampPeriods

'NumPeriods' Number of periods each sine wave is at maximum amplitude,
specified as either:

• Scalar to set all frequencies to same value
• Vector to set each frequencies to a different value

Default: max(3–RampPeriods+SettlingPeriods,, 2)

NumPeriods
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Option Name Option Value

'SettlingPeriods' Number of periods corresponding to the transient portion
of the simulated response at a specific frequency, before the
system reaches steady state, specified as either:

• Scalar to set all frequencies to same value
• Vector to set each frequencies to a different value

Before performing the estimation, frestimate discards this
number of periods from the output signals.
Default: 1

SettlingPeriods
Bold periods
for estimation

'ApplyFilteringInFRESTIMATE' Frequency-selective FIR filtering of the input signal before
estimating the frequency response using frestimate.

• 'on' (default)
• 'off'

For more information, see the frestimate algorithm.
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Option Name Option Value

'SimulationOrder' The order in which frestimate injects the individual
frequencies of the input signal into your Simulink model
during simulation.

• 'Sequential' (default) — frestimate injects one
frequency after the next into your model in a single
Simulink simulation using variable sample time. To use
this option, your Simulink model must use a variable-step
solver.

• 'OneAtATime' — frestimate injects each frequency
during a separate Simulink simulation of your model.
Before each simulation, frestimate initializes your
Simulink model to the operating point specified for
estimation. If you have Parallel Computing Toolbox
installed, you can run each simulation in parallel to
speed up estimation using parallel computing. For more
information, see “Speeding Up Estimation Using Parallel
Computing”.

Examples

Create a sinestream signal having several different frequencies. For each frequency,
specify an amplitude, a number of periods at maximum amplitude, a ramp-up period, and
a number of settling periods.

1 Create sinestream signal.

input = frest.Sinestream('Frequency',[1 2.5 5],...

             'Amplitude',[1 2 1.5],...

             'NumPeriods',[4 6 12],...

             'RampPeriods',[0 2 6],...

             'SettlingPeriods',[1 3 7]);

2 (Optional) Plot the sinestream signal.

plot(input)
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Create a sinusoidal input signal with the following characteristics:

• 50 frequencies spaced logarithmically between 10 Hz and 1000 Hz
• All frequencies have amplitude of 1e-3
• Sampled with a frequency 10 times the frequency of the signal (meaning ten samples

per period)
% Create the input signal

input = frest.Sinestream('Amplitude',1e-3,'Frequency',logspace(1,3,50),...

'SamplesPerPeriod',10,'FreqUnits','Hz');

More About
• “Creating Input Signals for Estimation”
• “Estimate Frequency Response (MATLAB Code)”
• “Estimate Frequency Response Using Linear Analysis Tool”
• “Speeding Up Estimation Using Parallel Computing”

See Also
frest.Chirp | frest.Random | frestimate | generateTimeseries |
frest.createFixedTsSinestream | getSimulationTime
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frestimate
Frequency response estimation of Simulink models

Syntax

sysest = frestimate(model,io,input)

sysest = frestimate(model,op,io,input)

[sysest,simout] = frestimate(model,op,io,input)

[sysest,simout] = frestimate(model,op,io,input,options)

Description

sysest = frestimate(model,io,input) estimates frequency response model
sysest. model is a string that specifies the name of your Simulink model. input can
be a sinestream, chirp, or random signal, or a MATLAB timeseries object. io specifies
the linearization I/O object, which you either obtain using getlinio or create using
linio. I/O points cannot be on bus signals. The estimation occurs at the operating point
specified in the Simulink model.

sysest = frestimate(model,op,io,input) initializes the model at the operating
point op before estimating the frequency response model. Create op using either
operpoint or findop.

[sysest,simout] = frestimate(model,op,io,input) estimates frequency
response model and returns the simulated output simout. This output is a cell array of
Simulink.Timeseries objects with dimensions m-by-n. m is the number of linearization
output points, and n is the number of input channels.

[sysest,simout] = frestimate(model,op,io,input,options) uses the
frequency response options (options) to estimate the frequency response. Specify these
options using frestimateOptions.

Examples

Estimating frequency response for a Simulink model:
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% Create input signal for simulation:

input = frest.Sinestream('Frequency',logspace(-3,2,30));

% Open the Simulink model:

watertank

% Specify portion of model to estimate:

io(1)=linio('watertank/PID Controller',1,'input');

io(2)=linio('watertank/Water-Tank System',1,'openoutput');

% Specify the steady state operating point for the estimation.

watertank_spec = operspec('watertank');

op = findop('watertank',watertank_spec);

% Estimate frequency response of specified blocks:

sysest = frestimate('watertank',op,io,input);

bode(sysest)

Validate exact linearization results using estimated frequency response of a Simulink
model:
% Open the Simulink model:
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watertank

% Specify portion of model to estimate:

io(1)=linio('watertank/PID Controller',1,'input');

io(2)=linio('watertank/Water-Tank System',1,'output');

% Specify operating point for linearization and estimation:

watertank_spec = operspec('watertank');

op = findop('watertank',watertank_spec);

% Linearize the model:

sys = linearize('watertank',op,io);

% Estimate the frequency response of the watertank model

input = frest.Sinestream('Frequency',logspace(-1,2,10));

[sysest,simout] = frestimate('watertank',op,io,input);

% Compare linearization and estimation results in frequency domain:

frest.simView(simout,input,sysest,sys)
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More About

Algorithms

frestimate performs the following operations when you use the sinestream signal:

1 Injects the sinestream input signal you design, uest(t), at the linearization input
point.

2 Simulates the output at the linearization output point.

frestimate adds the signal you design to existing Simulink signals at the
linearization input point.

u(t)

u    (t)

y(t)

est

3 Discards the SettlingPeriods portion of the output (and the corresponding input)
at each frequency.

The simulated output at each frequency has a transient portion and steady state
portion. SettlingPeriods corresponds to the transient components of the output
and input signals. The periods following SettlingPeriods are considered to be at
steady state.
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SettlingPeriods

Input

Output

4 Filters the remaining portion of the output and the corresponding input signals
at each input frequency using a bandpass filter. Because most models are not
at steady state, the response might contain low-frequency transient behavior.
Filtering typically improves the accuracy of your model by removing the effects of
frequencies other than the input frequencies, which are problematic when sampling
and analyzing data of finite length. These effects are called spectral leakage.

Any transients associated with filtering are only in the first period of the filtered
steady-state output. After filtering, frestimate discards the first period of the
input and output signals. frestimate uses a finite impulse response (FIR) filter,
whose order matches the number of samples in a period.
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SettlingPeriods
Filtered
portion

Used for
estimation

Input

Output

5 Estimates the frequency response of the processed signal by computing the ratio of
the fast Fourier transform of the filtered steady-state portion of the output signal
yest(t) and the fast Fourier transform of the filtered input signal uest(t):

Frequency sponse Model
fft of y t

fft of u t

est

est

Re
( )

( )
=

To compute the response at each frequency, frestimate uses only the simulation
output at that frequency.

• “Estimate Frequency Response (MATLAB Code)”
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• “Estimate Frequency Response Using Linear Analysis Tool”
• “Speeding Up Estimation Using Parallel Computing”

See Also
frest.Sinestream | frest.Chirp | frest.Random | frest.simView |
frestimateOptions | getSimulationTime
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frestimateOptions
Options for frequency response estimation

Syntax

options = frestimateOptions

options = frestimateOptions('OptionName',OptionValue)

Description

options = frestimateOptions creates a frequency response estimation options
object, options, with default settings. Pass this object to the function frestimate to
use these options for frequency response estimation.

options = frestimateOptions('OptionName',OptionValue) creates a frequency
response estimation options object options using the options specified by comma-
separated name/value pairs.

Input Arguments

'OptionName',OptionValue

Estimation options, specified as comma-separated pairs of option name string and the
option value.

Option Name Option Value

'BlocksToHoldConstant' An array of Simulink.BlockPath that specifies the
paths of time-varying source blocks to hold constant during
frequency response estimation. Use frest.findSources to
identify time-varying source blocks that can interfere with
frequency response estimation.
Default: empty

'UseParallel' Set to 'on' to enable parallel computing for estimations
with the frestimate command.
Default: 'off'
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Option Name Option Value

'ParallelPathDependencies' A cell array of strings that specifies the path dependencies
required to execute the model to estimate. All the workers
in the parallel pool must have access to the folders listed in
'ParallelPathDependencies'.
Default: empty

Examples

Identify and disable time-varying source blocks for frequency response estimation.

% Open Simulink model.

mdl = 'scdspeed_ctrlloop';

open_system(mdl)

% Convert referenced subsystem to normal mode.

set_param('scdspeed_ctrlloop/Engine Model','SimulationMode','Normal');

% Get I/O points and create sinestream.

io = getlinio(mdl)

in = frest.Sinestream('Frequency',logspace(1,2,10),'NumPeriods',30,...

              'SettlingPeriods',25);

% Identify time-varying source blocks.

srcblks = frest.findSources(mdl)

% Create options set specifying blocks to hold constant

opts = frestimateOptions

opts.BlocksToHoldConstant = srcblks

% Run frestimate 

[sysest,simout] = frestimate(mdl,io,in,opts)

Enable parallel computing and specify the model path dependencies.
% Copy referenced model to temporary folder.

pathToLib = scdpathdep_setup;   

% Add folder to search path.

addpath(pathToLib);

% Open Simulink model.
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mdl = 'scdpathdep';

open_system(mdl);

% Get model dependency paths.

dirs = frest.findDepend(mdl)

% The resulting path is on a local drive, C:/.

% Replace C:/ with valid network path accessible to remote workers.

dirs = regexprep(dirs,'C:/','\\\\hostname\\C$\\')

% Enable parallel computing and specify the model path dependencies.

options = frestimateOptions('UseParallel','on','ParallelPathDependencies',dirs)

Alternatives

You can enable parallel computing for all models with no path dependencies. To do so,
select the Use the parallel pool when you use the "frestimate" command check box
in the MATLAB preferences. When you select this check box and use the frestimate
command, you do not need to provide a frequency response options object.

If your model has path dependencies, you must create your own frequency
response options object that specifies the path dependencies. Use the
ParallelPathDependencies option before beginning the estimation.

See Also
frestimate | frest.findSources
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fselect
Extract sinestream signal at specified frequencies

Syntax

input2 = fselect(input,fmin,fmax)

input2 = fselect(input,index)

Description

input2 = fselect(input,fmin,fmax) extracts a portion of the sinestream input
signal input in the frequency range between fmin and fmax. Specify fmin and fmax in
the same frequency units as the sinestream signal.

input2 = fselect(input,index) extracts a sinestream signal at specific
frequencies, specified by the vector of indices index.

Examples

Extract the second frequency in a sinestream signal:

% Create the input signal

input = frest.Sinestream('Frequency',[1 2.5 5],...

                      'Amplitude',[1 2 1.5],...

                      'NumPeriods',[4 6 12],...

                      'RampPeriods',[0 2 6]);

% Extract a sinestream signal for the second frequency

input2 = fselect(input,2)

% Plot the extracted input signal

plot(input2)

More About
• “Time Response Not at Steady State”
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See Also
frestimate | fdel | frest.Sinestream
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generateTimeseries
Generate time-domain data for input signal

Syntax

ts = generateTimeseries(input)

Description

ts = generateTimeseries(input) creates a MATLAB timeseries object ts from
the input signal input. input can be a sinestream, chirp, or random signal. For chirp
and random signals, that time vector of ts has equally spaced time values, ranging from
0 to Ts(NumSamples-1).

Examples

Create timeseries object for chirp signal:
input = frest.Chirp('Amplitude',1e-3,'FreqRange',...

                    [10 500],'NumSamples',20000);

ts = generateTimeseries(input)

See Also
frestimate | frest.Sinestream | frest.Chirp | frest.Random



 get

6-71

get
Properties of linearization I/Os and operating points

Syntax

get(ob)

get(ob,'PropertyName')

Description

get(ob)  displays all properties and corresponding values of the object, ob, which can
be a linearization I/O object, an operating point object, or an operating point specification
object. Create ob using findop, getlinio, linio, operpoint, or operspec.

get(ob,'PropertyName')  returns the value of the property, PropertyName, within
the object, ob. The object, ob, can be a linearization I/O object, an operating point object,
or an operating point specification object. Create ob using findop, getlinio, linio,
operpoint, or operspec.

ob.PropertyName  is an alternative notation for displaying the value of the property,
PropertyName, of the object, ob. The object, ob, can be a linearization I/O object,
an operating point object, or an operating point specification object. Create ob using
findop, getlinio, linio, operpoint, or operspec.

Examples

Create an operating point object, op, for the Simulink model, magball.

op=operpoint('magball');

Get a list of all object properties using the get function with the object name as the only
input.

get(op)

This returns the properties of op and their current values.
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     Model: 'magball'

     States: [5x1 opcond.StatePoint]

     Inputs: [0x1 double]

       Time: 0

    Version: 2

To view the value of a particular property of op, supply the property name as an
argument to get. For example, to view the name of the model associated with the
operating point object, type:

V=get(op,'Model')

which returns

V =

magball

Because op is a structure, you can also view any properties or fields using dot-notation,
as in this example.

W=op.States

This notation returns a vector of objects containing information about the states in the
operating point.

(1.) magball/Controller/PID Controller/Filter

      x: 0            

(2.) magball/Controller/PID Controller/Integrator

      x: 14           

(3.) magball/Magnetic Ball Plant/Current

      x: 7            

(4.) magball/Magnetic Ball Plant/dhdt

      x: 0            

(5.) magball/Magnetic Ball Plant/height

      x: 0.05

Use get to view details of W. For example:

get(W(2),'x')

returns

ans =

   14.0071   
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See Also
findop | getlinio | linio | operpoint | operspec | set



6 Alphabetical List

6-74

getinputstruct
Input structure from operating point

Syntax

in_struct = getinputstruct(op_point)

Description

in_struct = getinputstruct(op_point) extracts a structure of input values,
in_struct, from the operating point object, op_point. The structure, in_struct, uses
the same format as Simulink software which allows you to set initial values for inputs in
the model within the Data Import/Export pane of the Configuration Parameters dialog
box.

Examples

Create an operating point object for the scdplane model:

open_system('scdplane')

op_scdplane = operpoint('scdplane');

Extract an input structure from the operating point object:

inputs_scdplane = getinputstruct(op_scdplane)

inputs_scdplane = 

       time: 0

    signals: [1x1 struct]

To view the values of the inputs within this structure, use dot-notation to access the
values field:

inputs_scdplane.signals.values

In this case, the value of the input is 0.
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See Also
getstatestruct | getxu | operpoint
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getlinio
Linearization input/output (I/O) settings for Simulink model, Linear Analysis Plots or
Model Verification block

Syntax
io = getlinio('sys')

io = getlinio('blockpath')

Alternatives
As an alternative to getlinio, view linearization I/Os annotated in the Simulink model
in the:

•
Exact Linearization tab of the Linear Analysis Tool. In the Setup section, click 
to view and edit the linearization I/Os. The icon appears only when Analysis I/Os is
set to Model I/Os.

• Linearization inputs/outputs table in the Linearizations tab of the Block
Parameters dialog box for Linear Analysis Plots or Model Verification blocks.

Description
io = getlinio('sys')  finds all linearization inputs/outputs (I/Os) in the Simulink
model, sys, and returns a vector of objects, io. Each object represents a linearization
annotation in the model and is associated with an output port of a Simulink block. Before
running getlinio, use the right-click menu to insert the linearization annotations, or I/
Os, on the signal lines of the model diagram.

io = getlinio('blockpath') finds all I/Os in a Linear Analysis Plots block or a
Model Verification block. blockpath is the full path to the block. io is a vector of objects
and has an entry for each linearization port used by the block.

Each object within the vector, io, has the following properties:

Active Set this value to 'on', when the I/O is used for
linearization, and 'off' otherwise
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Block Name of the block with which the I/O is associated
PortNumber Integer referring to the output port with which the I/O is

associated
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Type Choose one of the following linearization I/O types:

• 'openinput' — Open-loop input. Specifies a
linearization input point after a loop opening.

Typically, you use this input type with an open-loop
linearization output to linearize a plant or controller.

For example, to compute the plant transfer function, G,
in the following feedback loop, specify the linearization
points as shown:

K yr
+

-

e
G

u

Open-loop
input

Controller Plant

Open-loop
output

Similarly, you can compute the controller transfer
function, K, by specifying openinput at the input signal
and open-loop linearization output at the output signal
of the Controller block.

• 'openoutput' — Open-loop output. Specifies a
linearization output point before a loop opening.

Typically, you use this output type with an open-loop
linearization input openinput or input perturbation
input to linearize a plant or controller, as shown in the
preceding figure.

• 'looptransfer' — Loop transfer. Specifies an output
point before a loop opening followed by an input.

Use this input/output type to compute the open-loop
transfer function around the loop.
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For example, to compute -GK in the following feedback
loop, specify the linearization input/output point as
shown:

K yr
+

-

e G
u

Loop transfer

Controller Plant

Similarly, compute -KG by specifying looptransfer at
the output signal of the Controller block.

• 'input' — Input perturbation. Specifies an additive
input to a signal.

For example, to compute the response -K/(1+KG) of the
following feedback loop, specify an input perturbation
and an output measurement point as shown:

K yr
+

-

e
G

u

Input
perturbation

Controller Plant

Output
measurement

Similarly, you can compute G/(1+GK) using input at
the output signal of the Controller block and an output
measurement output at the output signal of the Plant
block.
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• 'output' — Output measurement. Takes
measurement at a signal.

For example, to compute the response -K/(1+KG),
specify an output measurement point and an input
perturbation as shown in the preceding figure.

• 'loopbreak' — Loop break. Specifies a loop opening.

Use to compute open-loop transfer function around a
loop. Typically, you use this input/output type when you
have nested loops or want to ignore the effect of some
loops.

For example, to compute the inner loop seen by K1 and
exclude the outer loop, specify the input/output points
and loopbreak as shown:

K1 y
+

- e
G

u

Open-loop
input

Inner
Controller

Plant

r
+

-

K2

Outer
Controller

Open-loop
output

Loop
break

• 'sensitivity' — Sensitivity. Specifies an additive
input followed by an output measurement.

Use to compute sensitivity transfer function for an
additive disturbance at the signal.

For example, compute the input/load sensitivity, 1/
(1+KG), in the following feedback loop, specify the
linearization input/output point as shown:
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K yr
+

-

e
G

u

Sensitivity

Controller Plant

Similarly, compute output sensitivity at the plant
output, 1/(1+GK), by specifying a sensitivity input/
output point at the output signal of the Plant block.

• 'compsensitivity' — Complementary sensitivity.
Specifies an output followed by an additive input.

Use to compute closed-loop transfer function around the
loop.

For example, to compute -GK/(1+GK) (the transfer
function from r to y) in the following feedback loop,
specify the linearization input/output point at the
output signal of the Plant block as shown:

BusElement Bus element name with which the I/O is associated. Empty
string ('') if the I/O is not a bus element.

Description String description of the I/O object
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You can edit this I/O object to change its properties. Alternatively, you can change
the properties of io using the set function. To upload an edited I/O object to the
Simulink model diagram, use the setlinio function. Use I/O objects with the function
linearize to create linear models.

Examples

Find linearization inputs/outputs in a Simulink model.

Before creating a vector of I/O objects using getlinio, you must add linearization
annotations representing the I/Os, such as input points or output points, to a Simulink
model.

1 Open a Simulink model.

magball

2 Right-click the signal line between the Magnetic Ball Plant and the Controller.
Select Linear Analysis Points > Input Perturbation from the menu to place an
input point on this signal line.

A small arrow pointing toward a small circle just above the signal line represents
the input point. The input point is not the output of the block, rather it is an additive
input to the signal.

3 Right-click the signal line after the Magnetic Ball Plant. Select Linear Analysis
Points > Open-loop Output to place an output point on this signal line.

A small arrow pointing away from the signal line represents the output point.
4 Create a vector of I/O objects for this model.

io=getlinio('magball')

This syntax returns a formatted display of the linearization I/Os.
2x1 vector of Linearization IOs: 

--------------------------

1. Linearization input perturbation located at the following signal:

- Block: magball/Controller

- Port: 1

2. Linearization open-loop output located at the following signal:

- Block: magball/Magnetic Ball Plant

- Port: 1
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io is a vector with two entries representing the two linearization annotations
previously set in the model diagram. MATLAB also displays:

• The linearization I/O type (input or output) and whether the IO is a loop opening
• Block name associated with the I/O
• Port number associated with the I/O

Display the properties of each I/O object using the get function.

This example shows how to find linearization inputs/outputs in a Linear Analysis Plots
block to update the I/Os.

1 Open the watertank model, and specify input and output (I/O).

a Right-click the Desired Water Level output signal, and select Linear Analysis
Points > Input Perturbation.

b Right-click the Water-Tank System output signal, and select Linear Analysis
Points > Open-loop Output.

The linearization I/O markers appear in the model, as shown in the next figure.

Alternatively, you can use linio.
2 Drag and drop a Bode Plot block from the Simulink Control Design Linear Analysis

Plots library into the Simulink Editor. When you drag and drop the block, the block
I/Os are set to the model I/Os.

3 Find all I/Os used by the Bode Plot block.

io = getlinio('watertank/Bode Plot')

The following results appear at the MATLAB prompt:
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2x1 vector of Linearization IOs: 

--------------------------

1. Linearization input perturbation located at the following signal:

- Block: watertank/Desired  Water Level

- Port: 1

2. Linearization open-loop output located at the following signal:

- Block: watertank/Water-Tank System

- Port: 1

See Also
get | linearize | set | linio | setlinio
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getlinplant
Compute open-loop plant model from Simulink diagram

Syntax

[sysp,sysc] = getlinplant(block,op)

[sysp,sysc] = getlinplant(block,op,options)

Description

[sysp,sysc] = getlinplant(block,op)  Computes the open-loop plant seen by
a Simulink block labeled block (where block specifies the full path to the block). The
plant model, sysp, and linearized block, sysc, are linearized at the operating point op.

[sysp,sysc] = getlinplant(block,op,options)  Computes the open-loop plant
seen by a Simulink block labeled block, using the linearization options specified in
options.

Examples

To compute the open-loop model seen by the Controller block in the Simulink model
magball, first create an operating point object using the function findop. In this case,
you find the operating point from simulation of the model.

magball

op=findop('magball',20);

Next, compute the open-loop model seen by the block magball/Controller, with the
getlinplant function.

[sysp,sysc]=getlinplant('magball/Controller',op)

The output variable sysp gives the open-loop plant model as follows:

a = 

            Current     dhdt   height
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   Current     -100        0        0

   dhdt      -2.801        0    196.2

   height         0        1        0

 

b = 

            Controller

   Current          50

   dhdt              0

   height            0

 

c = 

         Current     dhdt   height

   Sum2        0        0       -1

 

d = 

         Controller

   Sum2           0

 

Continuous-time model.

See Also
findop | linearizeOptions | operpoint | operspec
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getSimulationTime
Final time of simulation for frequency response estimation

Syntax

tfinal = getSimulationTime(input)

Description

tfinal = getSimulationTime(input) returns the final time of the Simulink
simulation performed during frequency response estimation using the input signal input.
Altering input to reduce the final simulation time can help reduce the time it takes to
perform frequency response estimation.

Input Arguments

input

Input signal for frequency response estimation with the frestimate command.

The input signal input must be either:

• A sinestream input signal, created in the Linear Analysis Tool or created with
frest.Sinestream

• A chirp input signal, created in the Linear Analysis Tool or created with
frest.Chirp

• A random input signal, created in the Linear Analysis Tool or created with
frest.Random

Output Arguments

tfinal

Final time of simulation performed during frequency response estimation using the input
signal input.
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For example, the command sysest = frestimate(mdl,io,input) performs
frequency response estimation on the Simulink model specified by mdl with the
linearization I/O set io. The estimation uses the input signal input. The command
tfinal = getSimulationTime(input) returns the simulation time at the end of the
simulation performed by frestimate.

Examples

Simulation Time for Frequency Response Estimation

Create a sinestream input signal and calculate the final simulation time of an estimation
using that signal.

input = frest.Sinestream('Amplitude',1e-3,...

                         'Frequency',logspace(1,3,50),...

                         'SamplesPerPeriod',40,'FreqUnits','Hz');

tfinal = getSimulationTime(input)

tfinal =

    4.4186

The sinestream signal input includes 50 frequencies spaced logarithmically between 10
Hz and 1000 Hz. Each frequency is sampled 40 times per period.

The resulting tfinal indicates that frequency response estimation of any model with
this input signal would simulate the model for 4.4186 s.

• “Creating Sinestream Input Signals”
• “Creating Chirp Input Signals”

More About
• “Ways to Speed up Frequency Response Estimation”

See Also
frest.Chirp | frest.Random | frest.Sinestream | frestimate
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getstatestruct
State structure from operating point

Syntax

x_struct = getstatestruct(op_point)

Description

x_struct = getstatestruct(op_point) extracts a structure of state values,
x_struct, from the operating point object, op_point. The structure, x_struct, uses
the same format as Simulink software which allows you to set initial values for states in
the model within the Data Import/Export pane of the Configuration Parameters dialog
box.

Examples

Create an operating point object for the magball model:

op_magball=operpoint('magball');

Extract a state structure from the operating point object:

states_magball=getstatestruct(op_magball)

This extraction returns

states_magball = 

       time: 0

    signals: [1x5 struct]

To view the values of the states within this structure, use dot-notation to access the
values field:

states_magball.signals.values
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This dot-notation returns

ans =

     0

ans =

   14.0071

ans =

    7.0036

ans =

     0

ans =

    0.0500

See Also
getinputstruct | getxu | operpoint
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getxu
States and inputs from operating points

Syntax

x = getxu(op_point)

[x,u] = getxu(op_point)

[x,u,xstruct] = getxu(op_point)

Description

x = getxu(op_point)  extracts a vector of state values, x, from the operating point
object, op_point. The ordering of states in x is the same as that used by Simulink
software.

[x,u] = getxu(op_point) extracts a vector of state values, x, and a vector of input
values, u, from the operating point object, op_point. States in x and inputs in u are
ordered in the same way as for Simulink.

[x,u,xstruct] = getxu(op_point)  extracts a vector of state values, x, a vector
of input values, u, and a structure of state values, xstruct, from the operating point
object, op_point. The structure of state values, xstruct, has the same format as that
returned from a Simulink simulation. States in x and xstruct and inputs in u are
ordered in the same way as for Simulink.

Examples

Create an operating point object for the magball model by typing:

op=operpoint('magball');

To view the states within this operating point, type:

op.States

which returns
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(1.) magball/Controller/PID Controller/Filter

      x: 0            

(2.) magball/Controller/PID Controller/Integrator

      x: 14           

(3.) magball/Magnetic Ball Plant/Current

      x: 7            

(4.) magball/Magnetic Ball Plant/dhdt

      x: 0            

(5.) magball/Magnetic Ball Plant/height

      x: 0.05                

To extract a vector of state values, with the states in an ordering that is compatible with
Simulink, along with inputs and a state structure, type:

[x,u,xstruct]=getxu(op)

This syntax returns:

x =

    0.0500

         0

   14.0071

    7.0036

         0

u =

     []

xstruct = 

       time: 0

    signals: [1x5 struct]

View xstruct in more detail by typing:

xstruct.signals

This syntax displays:

ans = 
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1x5 struct array with fields:

    values

    dimensions

    label

    blockName

    stateName

    inReferencedModel

    sampleTime

View each component of the structure individually. For example:

xstruct.signals(1).values

ans =

     0

or

xstruct.signals(2).values

ans =

    7.0036

You can import these vectors and structures into Simulink as initial conditions or input
vectors or use them with setxu, to set state and input values in another operating point.

See Also
operpoint | operspec
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initopspec
Initialize operating point specification values

Syntax

opnew=initopspec(opspec,oppoint)

opnew=initopspec(opspec,x,u)

opnew=initopspec(opspec,xstruct,u)

Alternatives

As an alternative to the initopspec function, initialize operating point specification
values in the Linear Analysis Tool. See “Import and Export Specifications For Operating
Point Search”.

Description

opnew=initopspec(opspec,oppoint)  initializes the operating point specification
object, opspec, with the values contained in the operating point object, oppoint. The
function returns a new operating point specification object, opnew. Create opspec with
the function operspec. Create oppoint with the function operpoint or findop.

opnew=initopspec(opspec,x,u)  initializes the operating point specification object,
opspec, with the values contained in the state vector, x, and the input vector, u. The
function returns a new operating point specification object, opnew. Create opspec with
the function operspec. You can use the function getxu to create x and u with the
correct ordering.

opnew=initopspec(opspec,xstruct,u)  initializes the operating point specification
object, opspec, with the values contained in the state structure, xstruct, and the input
vector, u. The function returns a new operating point specification object, opnew. Create
opspec with the function operspec. You can use the function getstatestruct or
getxu to create xstruct and the function getxu to create u with the correct ordering.
Alternatively, you can save xstruct to the MATLAB workspace after a simulation of the
model. See the Simulink documentation for more information on these structures.
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Examples

Create an operating point using findop by simulating the magball model and
extracting the operating point after 20 time units.

oppoint=findop('magball',20)

This syntax returns the following operating point:

 Operating Point for the Model magball.

 (Time-Varying Components Evaluated at time t=20)

States: 

----------

(1.) magball/Controller/PID Controller/Filter

      x: 2.33e-007    

(2.) magball/Controller/PID Controller/Integrator

      x: 14           

(3.) magball/Magnetic Ball Plant/Current

      x: 7            

(4.) magball/Magnetic Ball Plant/dhdt

      x: 3.6e-008     

(5.) magball/Magnetic Ball Plant/height

      x: 0.05         

 

Inputs: None 

----------

Use these operating point values as initial values in an operating point specification
object.

opspec=operspec('magball');

newopspec=initopspec(opspec,oppoint)

The new operating point specification object is displayed.

 Operating Specification for the Model magball.

 (Time-Varying Components Evaluated at time t=0)

States: 

----------

(1.) magball/Controller/PID Controller/Filter

      spec:  dx = 0,  initial guess:     2.33e-007

(2.) magball/Controller/PID Controller/Integrator
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      spec:  dx = 0,  initial guess:            14

(3.) magball/Magnetic Ball Plant/Current

      spec:  dx = 0,  initial guess:             7

(4.) magball/Magnetic Ball Plant/dhdt

      spec:  dx = 0,  initial guess:      3.6e-008

(5.) magball/Magnetic Ball Plant/height

      spec:  dx = 0,  initial guess:          0.05

 

Inputs: None 

----------

 

Outputs: None 

----------

You can now use this object to find operating points by optimization.

See Also
findop | getstatestruct | getxu | operpoint | operspec
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linearize

Linear approximation of Simulink model or block

Syntax

linsys = linearize(sys,io)

linsys = linearize(sys,op)

linsys = linearize(sys,op,io)

linsys = linearize(sys,op,io,options)

linsys = linearize(sys,io,param)

[linsys,op] = linearize(sys,io,tsnapshot)

linsys = linearize(sys,op,io,'StateOrder',stateorder)

linblock = linearize(sys,blockpath,op)

linsys = linearize(sys,blocksub,op,io)

Description

linsys = linearize(sys,io) linearizes the nonlinear Simulink model defined by the
linearization I/O points io. Linearization uses the operating point that corresponds to the
initial states and input levels in the Simulink model.

linsys = linearize(sys,op) linearizes the entire Simulink model such that the
linearization I/O points are the root-level inport and output blocks in sys. Linearization
uses the operating point op.

linsys = linearize(sys,op,io) linearizes the model specified by linearization I/O
points io.

linsys = linearize(sys,op,io,options) uses algorithm options specified in
options.

linsys = linearize(sys,io,param) batch linearizes the model using the specified
I/O points, varying the values of the parameters specified by param. Linearization uses
the operating point that corresponds to the initial states and input levels in the Simulink
model.
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[linsys,op] = linearize(sys,io,tsnapshot) linearizes the model at one or
more simulation times tsnapshot. Returns the operating point op that corresponds to
the simulation snapshot. Omit io when you want to use the root-level inport and output
blocks in sys as linearization I/O points.

linsys = linearize(sys,op,io,'StateOrder',stateorder) returns a linear
model with a specified state order.

linblock = linearize(sys,blockpath,op) linearizes the block in the model sys
specified by the blockpath. Linearization uses the operating point op.

linsys = linearize(sys,blocksub,op,io) linearizes the nonlinear Simulink
model defined by the linearization I/O points io. blocksub specifies substitute
linearizations of blocks and subsystems. Use this syntax, for example, to specify a custom
linearization for a block. You can also use this syntax for blocks that do not linearize
successfully, such as blocks with discontinuities or triggered subsystems. Omit the
operating point op when you want to use the model operating point. Omit io when you
want to use the root-level inport and output blocks in sys as linearization I/O points.

Input Arguments

sys

Simulink model name, specified as a string inside single quotes (' ').

Default:

io

Linearization I/O object, specified using linio.

If the linearization input and output points are annotated in the Simulink model, extract
these points from the model into io using getlinio.

io must correspond to the Simulink model sys or some normal mode model reference in
the model hierarchy.

op

Operating point object, specified using operpoint or findop.
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op must correspond to the Simulink model sys.

Default:

options

Algorithm options, specified using linearizeOptions.

Default:

param

Parameter variations, specified as:

• Structure — For a single parameter, param must be a structure with the following
fields:

• Name — Parameter name, specified as a string or MATLAB expression
• Value — Parameter sample values, specified as a double array

For example:

param.Name = 'A';

param.Value = linspace(0.9*A,1.1*A,3);

• Structure array — Vary the value of multiple parameters. For example, suppose you
want to vary the value of the A and b model parameters in the 10% range:

[A_grid,b_grid] = ndgrid(linspace(0.9*A,1.1*A,3),...

                           linspace(0.9*b,1.1*b,3));

params(1).Name = 'A';

params(1).Value = A_grid;

params(2).Name = 'b';

params(2).Value = b_grid;

If param specifies tunable parameters, the software batch linearizes the model using a
single model compilation.

Default:

tsnapshot

Simulation snapshot time instants when to linearize the model, specified as a scalar or
vector.
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stateorder

State order in linearization results, specified as a cell array of block paths for blocks
with states. Each block path is string of the form model/subsystem/block that uniquely
identifies a block in the model.

The order of the block paths in the cell array should match the desired order of the
linearized model states.

Default:

blockpath

Block to linearize, specified as a full block path. A block path is string of the form model/
subsystem/block that uniquely identifies a block in the model.

blocksub

Substitute linearizations for blocks and model subsystems. Use blocksub to specify
a custom linearization for a block or subsystem. You also can use blocksub for
blocks that do not have analytic linearizations, such as blocks with discontinuities or
triggered subsystems. Specify multiple substitute linearizations for a block to obtain
a linearization for each substitution (batch linearization). Use this functionality, for
example, to study the effects of varying the linearization of a Saturation block on the
model dynamics.

blocksub is an n-by-1 structure, where n is the number of blocks for which you specify
the linearization. blocksub has these fields:

• Name — Block path corresponding to the block for which you want to specify the
linearization.

blocksub.Name is a string of the form model/subsystem/block that uniquely
identifies a block in the model.

• Value — Desired linearization of the block, specified as one of the following:

• Double, for example 1. Use for SISO models only. For models having either
multiple inputs or multiple outputs, or both, use an array of doubles. For example,
[0 1]. Each array entry specifies a linearization for the corresponding I/O
combination.

• LTI model, uncertain state-space model (requires Robust Control Toolbox
software), or uncertain real object (requires Robust Control Toolbox software).
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Model I/Os must match the I/Os of the block specified by Name. For example,
zpk([],[-10 -20],1).

• Array of LTI models, uncertain state-space models, or uncertain real objects. For
example, [zpk([],[-10 -20],1); zpk([],[-10 -50],1)].

If you vary model parameter values, then the LTI model array size must match the
grid size.

• Structure, with the following fields (for information about each field, click the field
name)

• Specification

Block linearization, specified as a string. The string can include a MATLAB
expression or function that returns one of the following:

• Linear model in the form of a D-matrix
• Control System Toolbox LTI model object
• Robust Control Toolbox uncertain state space or uncertain real object

(requires Robust Control Toolbox software)

If blocksub.Value.Specification is a MATLAB expression, this
expression must follow the resolution rules , as described in “Symbol
Resolution”.

If blocksub.Value.Specification is a function, this function must have
one input argument, BlockData, which is a structure that the software creates
automatically and passes to the specification function. BlockData has the
following fields:

• BlockName is the name of the Simulink block with the specified
linearization.

• Parameters is a structure array containing the evaluated values for the
block. Each element of the array has the fields 'Name' and 'Value', which
contain the name and evaluated value, respectively, for the parameter.

• Inputs is a structure that has the following fields:

• BlockName — Contains the name of the block whose output connects
to the input of the block whose linearization you are specifying. For
example, if you specify the linearization of a block called Dynamics, and
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the second input of Dynamics is driven by a signal from a block called
Torque, then BlockData.Inputs(2).BlockName is the full block path
name of Torque.

• PortIndex — Identifies which output port of BlockName corresponds
to the input of the block whose linearization you are specifying. For
example, if the third output from Torque drives the second input of
Dynamics, then BlockData.Inputs(2).PortIndex = 3.

• Values — The value of the signal specified by BlockName and
PortIndex. If this signal is a vector-valued signal, Values is a vector of
corresponding dimension.

• ny is the number of output channels of the block linearization.
• nu is the number of input channels of the block linearization.

• Type

Specification type, specified as one of these strings:
'Expression'

'Function'

• ParameterNames

Linearization function parameter names, specified as a comma-separated list of
strings. Specify only when blocksub.Value.Type = 'Function' and your
block linearization function requires input parameters. These parameters only
impact the linearization of the specified block

You also must specify the corresponding blocksub.Value.ParameterValues
field.

• ParameterValues

Linearization function parameter values that correspond to
blocksub.Values.ParameterNames. Specify only when
blocksub.Value.Type = 'Function'.

blocksub.Value.ParameterValues is a comma separated list of values. The
order of parameter values must correspond to the order of parameter names in
blocksub.Value.ParameterNames.
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BlockLinearization is a state-space (ss) model that is the current default
linearization of the block. You can use BlockData.BlockLinearization in
the specification function to specify a block linearization that depends on the
default linearization, such as the default linearization multiplied by a time
delay.

Output Arguments

linsys

Linear time-invariant state-space model that approximates the nonlinear model specified
by linearization I/O points io.

linsys is returned as an ss object.

op

Operating point corresponding the simulation snapshot of the states and input levels
at tsnapshot, returned as an operating point object. This is the same object as returned
using operpoint or findop.

View op values to determine whether the model was linearized at a reasonable operating
point.

linblock

Linear time-invariant state-space model that approximates the specified nonlinear block,
returned as an ss object.

Examples

Linearization at Model Operating Point

This example shows how to use linearize to linearize a model at the operating point
specified in the model. The model operating point consists of the model initial state
values and input signals.
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1 Open Simulink model.

sys = 'watertank';

load_system(sys);

open_system(sys)

The Water-Tank System block represents the plant in this control system and
contains all of the system nonlinearities.

2 Specify to linearize the Water-Tank System block using linearization I/O points.

sys_io(1)=linio('watertank/PID Controller',1,'input');

sys_io(2)=linio('watertank/Water-Tank System',1,'openoutput');

Each linearization I/O point is associated with a block outport. For example, to
specify a linearization input point at the Water-Tank System block input, you must
associate this input point with the outport of the PID Controller block.

sys_io is an object array that includes two linearization I/O objects. The first
object, sys_io(1), specifies the linearization input point on the first watertank/
PID Controller output signal. The second object, sys_io(2), specifies the
linearization output point on the first watertank/Water-Tank System output
signal.

Note: When there are multiple block output signals and you want to specify an
output port other than the first output, enter the desired output port number as the
second argument of linio.

Specifying the linearization output point as open loop removes the effects of the
feedback signal on the linearization without changing the model operating point.

Note: Do not open the loop by manually removing the feedback signal from the
model. Removing the signal manually changes the operating point of the model.

3 Update the model to reflect the modified linearization I/O object.

setlinio(sys,sys_io);

When you add input points, output points, or loop openings, linearization I/O
markers appear in the model. Use these to visualize your linearization points.
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4 Linearize the Water-Tank System block at the model operating point.

linsys = linearize(sys,sys_io);

bdclose(sys);

linsys is a state-space model object.
5 Plot a Bode plot of the linearized model.

bode(linsys)

The resulting Bode plot looks like a stable first-order response, as expected.
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Linearization at Simulation Snapshot

This example shows how to use linearize to linearize a model by simulating the model
and extracting the state and input levels of the system at specified simulation times.

1 Open Simulink model.

sys = 'watertank';

load_system(sys);

The Water-Tank System block represents the plant in this control system and
contains all of the system nonlinearities.

2 Simulate the model to determine the time when the model reaches steady state.

The Scope block shows that the system reaches steady state at approximately 20
time units.
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3 Specify to linearize the open-loop Water-Tank System.

sys_io(1)=linio('watertank/PID Controller',1,'input');

sys_io(2)=linio('watertank/Water-Tank System',1,'openoutput');

The last input argument for computing sys_io(2) opens the feedback loop.

Note: Do not open the loop by manually removing the feedback signal from the
model. Removing the signal manually changes the operating point of the model.

4 Linearize the Water-Tank System block at a simulation time of 20time units.

tsnapshot = 20;

linsys = linearize(sys,sys_io,tsnapshot);

bdclose(sys);

linsys is a state-space model object.
5 Plot a Bode plot of the linearized model.

bode(linsys)

The resulting Bode plot looks like a stable first-order response, as expected.
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Linearization at Trimmed Operating Point

This example shows how to use linearize to linearize a model using a trimmed
operating point.

1 Open Simulink model.

sys = 'watertank';

load_system(sys);

2 Create operating point specification object.

opspec = operspec(sys);

By default, all model states are specified to be at steady state.
3 Find the steady-state operating point using trim analysis.

op = findop(sys,opspec);

4 Specify to linearize the open-loop Water-Tank System.
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sys_io(1)=linio('watertank/PID Controller',1,'input');

sys_io(2)=linio('watertank/Water-Tank System',1,'openoutput');

5 Linearize the Water-Tank System block at the trimmed operating point.

linsys = linearize(sys,op,sys_io);

bdclose(sys);

linsys is a state-space model object.

Linearization at Multiple Simulation Snapshots

This example shows how to use linearize to linearize a model at multiple simulation
snapshots.

1 Open Simulink model.

sys = 'watertank';

load_system(sys);

2 Specify to linearize the open-loop Water-Tank System.

sys_io(1)=linio('watertank/PID Controller',1,'input');

sys_io(2)=linio('watertank/Water-Tank System',1,'openoutput');

3 Define the simulation times at which to linearize the model.

tsnapshot = [1,20];

linsys = linearize(sys,sys_io,tsnapshot);

bdclose(sys);

4 Plot the Bode response.

bode(linsys);
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Plant Linearization at Model Operating Point

This example shows how to use linearize to linearize a subsystem at the model
operating point.

Use this approach instead of defining linearization I/O points when the plant is a
subsystem or a block.

1 Open Simulink model.

sys = 'watertank';

load_system(sys);

blockpath = 'watertank/Water-Tank System';

2 Linearize the Water-Tank System block.

linsys = linearize(sys,blockpath);

bdclose(sys);
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Alternatives

As an alternative to the linearize function, linearize models using:

• The Linear Analysis Tool. For example, see “Linearize Simulink Model at Model
Operating Point”.

• The slLinearizer interface. For example, see “Vary Parameter Values and Obtain
Multiple Transfer Functions Using slLinearizer”.

More About

Algorithms

By default, linearize automatically sets the Simulink model properties:

• BufferReuse = 'off'

• RTWInlineParameters = 'on'

• BlockReductionOpt = 'off'

After the linearization completes, Simulink restores the original model properties.
• “Batch Linearization Efficiency When You Vary Parameter Values”

See Also
findop | linearizeOptions | linlftfold | slLinearizer

Related Examples
• “Linearize Simulink Model at Model Operating Point”
• “Linearize at Trimmed Operating Point”
• “Batch Linearize Model for Parameter Value Variations Using linearize”
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linearizeOptions
Set options for linearization

Syntax

options = linearizeOptions

options = linearizeOptions(Name,Value)

Alternatives

As an alternative to linearizeOptions function, set options for linearization in the
Linear Analysis Tool.

Description

options = linearizeOptions returns the default linearization options.

options = linearizeOptions(Name,Value) returns an option set with additional
options specified by one or more Name,Value pair arguments. Use this option set
to specify options for commands that perform linearization, including linearize,
slLinearize, slTuner, ulinearize, and linlft.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

For example, 'RateConversionMethod','tustin' sets the
'RateConversionMethod' option to the value 'tustin'.
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linearizeOptions takes the following Name arguments:

'LinearizationAlgorithm'

Algorithm used for linearization, specified as either 'blockbyblock' or
'numericalpert'.

• 'blockbyblock' — Individually linearize each block in the model and combine the
results to produce the linearization of the specified system.

• 'numericalpert' — Full-model numerical-perturbation linearization in which root-
level inports and states are numerically perturbed. This algorithm ignores linear
analysis points set in the model and uses root-level inports and outports instead.

Block-by-block linearization has several advantages over full-model numerical
perturbation:

• Many Simulink blocks have preprogrammed linearization that provides an exact
linearization of the block.

• You can use linear analysis points to specify a portion of the model to linearize.
• You can configure blocks to use custom linearizations without affecting your model

simulation.
• Nonminimal states are automatically removed.
• You can specify that linearization include uncertainty (requires Robust Control

Toolbox software).

Default: 'blockbyblock'

'SampleTime'

The interval of time at which the signal is sampled, specified as a scalar value:

• –1 to use the longest sample time that contributes to the linearized model
• 0 for continuous-time systems
• Positive scalar value for discrete-time systems

Default: –1

'UseFullBlockNameLabels'

Flag indicating whether to truncate names of I/Os and states in the linearized model,
specified as either 'off' or 'on'.
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• 'off' — Use truncated names for the I/Os and states in the linearized model.
• 'on' — Use the full block path to name the I/Os and states in the linearized model.

Default: 'off'

'UseBusSignalLabels'

Flag indicating whether to use bus signal channel numbers or names to label the I/Os in
the linearized model, specified as either 'off' or 'on'.

• 'off' — Use bus signal channel number to label I/Os on bus signals in your
linearization results.

• 'on' — Use bus signal names to label I/Os on bus signals in your linearization
results. Bus signal names appear in the results when the I/O points are located at the
output of the following blocks:

• Root-level inport block containing a bus object
• Bus creator block
• Subsystem block whose source traces back to the output of a bus creator block
• Subsystem block whose source traces back to a root-level inport by passing

through only virtual or nonvirtual subsystem boundaries

Note: You cannot use this option when your model has mux/bus mixtures. For
information on how to avoid buses used as muxes, see “Prevent Bus and Mux Mixtures”
in the Simulink documentation.

Default: 'off'

'BlockReduction'

Flag indicating whether to omit blocks that are not in the linearization path, specified
as either 'off' or 'on'. This flag is ignored when 'LinearizationAlgorithm' is
'numericalpert'.

Set 'BlockReduction' to 'on' (default) to eliminate from the linearized model those
blocks that are not in the path of the linearization. Block reduction eliminates the states
of blocks in dead linearization paths from your linearization results. Some examples of
dead linearization paths are linearization paths that include:
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• Blocks that linearize to zero
• Switch blocks that are not active along the path
• Disabled subsystems
• Signals marked as open-loop linearization points

For example, with this flag set to 'on', the linearization result of the model shown in the
following figure includes only two states. It does not include states from the two blocks
outside the linearization path. These states do not appear because these blocks are on a
dead linearization path with a block that linearizes to zero (the zero gain block).

Set 'BlockReduction' to 'off' to return a linearized model that includes all of the
states of the model.

Default: 'on'

'IgnoreDiscreteStates'

Flag indicating whether to remove discrete-time states from the linearization, specified
as either 'off' or 'on'. This flag is ignored when 'LinearizationAlgorithm' is
'numericalpert'.

• 'off' — Always include discrete-time states.
• 'on' — Remove discrete states from the linearization. Use this option when

performing continuous-time linearization ('SampleTime' = 0) to accept the D value
for all blocks with discrete-time states.

Default: 'off'

'RateConversionMethod'

Method used for rate conversion when linearizing a multirate system, specified as one of
the following strings:
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• 'zoh' — Zero-order hold rate conversion method.
• 'tustin' — Tustin (bilinear) method.
• 'prewarp' — Tustin method with frequency prewarp. When you use this method, set

the 'PreWarpFreq' option to the desired prewarp frequency.
• 'upsampling_zoh' — Upsample discrete states when possible, and use 'zoh'

otherwise.
• 'upsampling_tustin' — Upsample discrete states when possible, and use

'tustin' otherwise.
• 'upsampling_prewarp' — Upsample discrete states when possible, and use

'prewarp' otherwise. When you use this method, set the 'PreWarpFreq' option to
the desired prewarp frequency.

For more information, and examples, on methods and algorithms for rate conversions
and linearization of multirate models, see:

• Linearization of Multirate Models
• Linearization Using Different Rate Conversion Methods
• “Continuous-Discrete Conversion Methods” in the Control System Toolbox

documentation

This option is ignored when 'LinearizationAlgorithm' is 'numericalpert'.

Default: 'zoh'

'PreWarpFreq'

Prewarp frequency in rad/s, specified as a nonnegative scalar.

Default: 0 (no prewarp)

'UseExactDelayModel'

Flag indicating whether to compute linearization with an exact delay
representation, specified as either 'off' or 'on'. This flag is ignored when
'LinearizationAlgorithm' is 'numericalpert'.

• 'off' — Return a model with approximate delays.
• 'on' — Return a linear model with an exact delay representation.

Default: 'off'
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'AreParamsTunable'

Flag indicating whether to recompile the model when parameter values are varied for
linearization, specified as either 'true' or 'false'. This flag is applicable when you
specify parameter value variations in your call to linearize. This flag is also applicable
when you use an slLinearizer or slTuner interface that specifies parameter value
variations.

• 'true' — Model is not recompiled when the software varies the parameter values for
linearization.

• 'false' — Model is recompiled each time the software applies a parameter value
variation for linearization. Use this option when you vary the value of a nontunable
parameter.

Default: 'true'

'NumericalPertRel'

Perturbation level for obtaining the linear model by numerical perturbation, specified
as a positive scalar. This option is ignored unless 'LinearizationAlgorithm' is
'numericalpert'. The perturbation of the system's states is specified by:

NumericalPertRel NumericalPertRel+ ¥ ¥
-

10
3

x

The perturbation of the system's inputs is specified by:

NumericalPertRel NumericalPertRel+ ¥ ¥
-

10
3

u

Default: 1e-5

'NumericalXPert'

Perturbation levels for the system’s states, specified as an operating point object.

To set individual perturbation levels for each of the system’s states:

1 Use the operpoint command to create an operating point object for the model.
2 Set the state values in the operating point object to the desired perturbation levels.
3 Set the value of the 'NumericalXPert' option to the operating point object.
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'NumericalUPert'

Perturbation levels for the system’s inputs, specified as an operating point object.

To set individual perturbation levels for each of the system’s inputs:

1 Use the operpoint command to create an operating point object for the model.
2 Set the input values in the operating point object to the desired perturbation levels.
3 Set the value of the 'NumericalUPert' option to the operating point object.

Output Arguments

options

Option set containing the specified options for linearization.

Examples

Create Options Set for Linearization

Create an options set for linearization that specifies prewarp rate conversion at a
frequency of 10 rad/s. Additionally, instruct the linearization not to omit blocks outside
the linearization path.

options = linearizeOptions('RateConversionMethod','prewarp',...

                           'PreWarpFreq',10,...

                           'BlockReduction','off');

                       

Alternatively, use dot notation to set the values of options.

options = linearizeOptions;

options.RateConversionMethod = 'prewarp';

options.PreWarpFreq = 10;

options.BlockReduction = 'off';

See Also
slLinearizer | linearize | slTuner | ulinearize | linlft



 linio

6-119

linio

Define linearization input/output (I/O) points for Simulink model

Syntax

io = linio('blockname', portnum)

io = linio('blockname', portnum, type)

io = linio('blockname', portnum, type, [], 'buselementname')

Alternatives

As an alternative to linio, create linearization I/O settings by using the right-click
menu on the signal in the model diagram or in the Linear Analysis Tool.

Description

io = linio('blockname', portnum) creates a linearization input/output (I/O)
object for the signal that originates from the outport with port number portnum of the
block blockname in a Simulink model. The default I/O type is 'input' which applies an
additive input to the signal. Use io with linearize to create linearized models.

io = linio('blockname', portnum, type) specifies the type of linearization I/O.
type must be one of the following strings:

• 'openinput' — Open-loop input. Specifies a linearization input point after a loop
opening.

Typically, you use this input type with an open-loop linearization output to linearize a
plant or controller.

For example, to compute the plant transfer function, G, in the following feedback loop,
specify the linearization points as shown:
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Controller Plant

Open-loop
output

Similarly, you can compute the controller transfer function, K, by specifying
openinput at the input signal and open-loop linearization output at the output
signal of the Controller block.

• 'openoutput' — Open-loop output. Specifies a linearization output point before a
loop opening.

Typically, you use this output type with an open-loop linearization input openinput
or input perturbation input to linearize a plant or controller, as shown in the
preceding figure.

• 'looptransfer' — Loop transfer. Specifies an output point before a loop opening
followed by an input.

Use this input/output type to compute the open-loop transfer function around the
loop.

For example, to compute -GK in the following feedback loop, specify the linearization
input/output point as shown:

K yr
+

-

e G
u

Loop transfer

Controller Plant
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Similarly, compute -KG by specifying looptransfer at the output signal of the
Controller block.

• 'input' — Input perturbation. Specifies an additive input to a signal.

For example, to compute the response -K/(1+KG) of the following feedback loop,
specify an input perturbation and an output measurement point as shown:

K yr
+

-

e
G

u

Input
perturbation

Controller Plant

Output
measurement

Similarly, you can compute G/(1+GK) using input at the output signal of the
Controller block and an output measurement output at the output signal of the Plant
block.

• 'output' — Output measurement. Takes measurement at a signal.

For example, to compute the response -K/(1+KG), specify an output measurement
point and an input perturbation as shown in the preceding figure.

• 'loopbreak' — Loop break. Specifies a loop opening.

Use to compute open-loop transfer function around a loop. Typically, you use this
input/output type when you have nested loops or want to ignore the effect of some
loops.

For example, to compute the inner loop seen by K1 and exclude the outer loop, specify
the input/output points and loopbreak as shown:
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• 'sensitivity' — Sensitivity. Specifies an additive input followed by an output
measurement.

Use to compute sensitivity transfer function for an additive disturbance at the signal.

For example, compute the input/load sensitivity, 1/(1+KG), in the following feedback
loop, specify the linearization input/output point as shown:

K yr
+

-

e
G

u

Sensitivity

Controller Plant

Similarly, compute output sensitivity at the plant output, 1/(1+GK), by specifying a
sensitivity input/output point at the output signal of the Plant block.

• 'compsensitivity' — Complementary sensitivity. Specifies an output followed by
an additive input.

Use to compute closed-loop transfer function around the loop.

For example, to compute -GK/(1+GK) (the transfer function from r to y) in the
following feedback loop, specify the linearization input/output point at the output
signal of the Plant block as shown:
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io = linio('blockname', portnum, type, [], 'buselementname') creates a
linearization I/O object for the element buselementname at the bus signal that originates
from the portnum of blockname.

Examples
This example shows how to create linearization I/O settings for a Simulink model.

1 Create an I/O setting for the signal originating from the Controller block of the
magball model.
io(1)=linio('magball/Controller',1)

By default, this I/O is an input point that specifies an additive input to the signal.
1x1 vector of Linearization IOs: 

--------------------------

1. Linearization input perturbation located at the following signal:

- Block: magball/Controller

- Port: 1

2 Create a second I/O setting within the object, io.

io(2)=linio('magball/Magnetic Ball Plant',1,'openoutput')

This I/O originates from the Magnetic Ball Plant block, is an output point and is also
an open-loop point.
1x2 vector of Linearization IOs: 

--------------------------

1. Linearization input perturbation located at the following signal:

- Block: magball/Controller

- Port: 1

2. Linearization open-loop output located at the following signal:
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- Block: magball/Magnetic Ball Plant

- Port: 1

Select Individual Bus Element as Linearization I/O point

This example shows how to create a linearization I/O setting for individual bus elements
in a bus signal.

1 Open Simulink model.

mdl = 'scdbusselection';

open_system(mdl);

2 Specify to linearize the Counter block using linearization I/O points on an individual
bus element.

io(1) = linio('scdbusselection/COUNTERBUSCreator',1,'input',[],...

      'limits.upper_saturation_limit');

io(2) = linio('scdbusselection/CounterA',1,'output',[],...

   'limits.upper_saturation_limit');

3 Update the model to reflect the linearization I/O object.

setlinio(mdl,io)

set_param(mdl,'ShowLinearizationAnnotations','on');

The linearization I/O markers appear in the model. Use these markers to visualize
your linearization points.
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4 Linearize the model at the model operating point.

sys = linearize(mdl,io);

See Also
getlinio | linearize | setlinio

Tutorials
• “Select Bus Elements as Linear Analysis Points” on page 2-25
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linlft
Linearize model while removing contribution of specified blocks

Syntax

lin_fixed = linlft(sys,io,blocks)

[lin_fixed,lin_blocks] = linlft(sys,io,blocks)

Description

lin_fixed = linlft(sys,io,blocks) linearizes the Simulink model named sys
while removing the contribution of certain blocks. Specify the full block pathnames of the
blocks to ignore in the cell array of strings called blocks. The linearization occurs at the
operating point specified in the Simulink model, which includes the ignored blocks. You
can optionally specify linearization points (linear analysis points) in the I/O object io.
The resulting linear model lin_fixed has this form:

sys

... ...

In Out

Block 1 Out

Block 2 Out

Block n Out

Block 1 In

Block 2 In

Block n In

The top channels In and Out correspond to the linearization points you specify in the I/O
object io. The remaining channels correspond to the connection to the ignored blocks.

When you use linlft and specify the 'block-by-block' linearization algorithm in
linearizeOptions, you can use all the variations of the input arguments for
linearize.

You can linearize the ignored blocks separately using linearize, and then combine the
linearization results using linlftfold.

[lin_fixed,lin_blocks] = linlft(sys,io,blocks) returns the linearizations
for each of the blocks specified in blocks. If blocks is a string identifying a single block
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path, lin_blocks is a single state-space (ss) model. If blocks is a cell array identifying
multiple blocks, lin_blocks is a cell array of state-space models. The full block path for
each block in lin_blocks is stored in the Notes property of the state-space model.

Examples

Linearize the following parts of the scdtopmdl Simulink model separately, and then
combine the results:

• Fixed portion, which contains everything except the Parameter Varying Controller
model reference

• Parameter Varying Controller model reference, which references the scdrefmdl
model

% Open the Simulink model

topmdl = 'scdtopmdl';

% Linearize the model without the Parameter Varying Controller

io = getlinio(topmdl);

blocks = {'scdtopmdl/Parameter Varying Controller'};

sys_fixed = linlft(topmdl,io,blocks);

% Linearize the Parameter Varying Controller

refmdl = 'scdrefmdl';

sys_pv = linearize(refmdl);

% Combine the results

BlockSubs(1) = struct('Name',blocks{1},'Value',sys_pv);

sys_fold = linlftfold(sys_fixed,BlockSubs);
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See Also
linlftfold | linearize | linio | getlinio | operpoint | linearizeOptions
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linlftfold

Combine linearization results from specified blocks and model

Syntax

lin = linlftfold(lin_fixed,blocksubs)

Description

lin = linlftfold(lin_fixed,blocksubs) combines the following linearization
results into one linear model lin:

• Linear model lin_fixed, which does not include the contribution of specified blocks
in your Simulink model

You compute lin_fixed using linlft.
• Block linearizations for the blocks excluded from lin_fixed

You specify the block linearizations in a structure array blocksubs, which contains
two fields:

• 'Block' is a string specifying the Simulink block to replace.
• 'Value' is the value of the linearization for each block.

Examples

Linearize the following parts of the scdtopmdl Simulink model separately and then
combine the results:

• Fixed portion, which contains everything except the Parameter Varying Controller
model reference
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• Parameter Varying Controller model reference, which references the scdrefmdl
model

% Open the Simulink model

topmdl = 'scdtopmdl';

% Linearize the model without the Parameter Varying Controller

io = getlinio(topmdl);

blocks = {'scdtopmdl/Parameter Varying Controller'};

sys_fixed = linlft(topmdl,io,blocks);

% Linearize the Parameter Varying Controller

refmdl = 'scdrefmdl';

sys_pv = linearize(refmdl);

% Combine the results

BlockSubs(1) = struct('Name',blocks{1},'Value',sys_pv);

sys_fold = linlftfold(sys_fixed,BlockSubs);

See Also
linlft | linearize | linio | getlinio | operpoint
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linoptions

Set options for linearization and finding operating points

Note: linoptions will be removed in a future version. Instead, use:

• linearizeOptions — Create options for commands that perform linearization, such
as linearize, slLinearizer, slTuner, and linlft.

• findopOptions — Create options for operating point searches using findop.

Syntax

opt=linoptions

opt=linoptions('Property1','Value1','Property2','Value2',...)

Alternatives

As an alternative to the linoptions function, set options for linearization and finding
operating points in the Simulink Control Design GUI.

Description

opt=linoptions  creates a linearization options object with the default settings. The
variable, opt, is passed to the functions findop and linearize to specify options for
finding operating points and linearization.

opt=linoptions('Property1','Value1','Property2','Value2',...)  creates
a linearization options object, opt, in which the option given by Property1 is set to
the value given in Value1, the option given by Property2 is set to the value given in
Value2, etc. The variable, opt, is passed to the functions findop and linearize to
specify options for finding operating points and linearization.



6 Alphabetical List

6-132

The following options can be set with linoptions:

LinearizationAlgorithm Set to 'numericalpert' to enable numerical-perturbation
linearization (as in Simulink 3.0 software) where root-level inports
and states are numerically perturbed. Linearization annotations
are ignored and root-level inports and outports are used instead.

Default is 'blockbyblock'.
SampleTime The time at which the signal is sampled. Nonzero for discrete

systems, 0 for continuous systems, -1 (default) to use the longest
sample time that contributes to the linearized model.

UseFullBlockNameLabels Set to 'off' (default) to use truncated names for the linearization
I/Os and states in the linearized model. Set to 'on' to use the
full block path to name the linearization I/Os and states in the
linearized models.

UseBusSignalLabels Set to 'off' (default) to use bus signal channel number to label I/
Os on bus signals in your linearization results. Set to 'on' to use
bus signal names to label I/Os on bus signals in your linearization
results. Bus signal names appear in the results when the I/O points
are located at the output of the following blocks:

• Root-level inport block containing a bus object
• Bus creator block
• Subsystem block whose source traces back to one of the

following:

• Output of a bus creator block
• Root-level inport by passing through only virtual or

nonvirtual subsystem boundaries

Note: You cannot use this option when your model has mux/bus
mixtures. For information on how to avoid buses used as muxes, see
“Prevent Bus and Mux Mixtures” in the Simulink documentation.

BlockReduction Set to 'on' (default) to eliminate from the linearized model those
blocks that are not in the path of the linearization. Block reduction
eliminates the states of blocks in dead linearization paths from
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your linearization results. Some examples of dead linearization
paths are linearization paths that include:

• Blocks that linearize to zero
• Switch blocks that are not active along the path
• Disabled subsystems
• Signals marked as open-loop linearization points

The linearization result of the model shown in the following figure
includes only two states. It does not include states from the two
blocks outside the linearization path. These states do not appear
because these blocks are on a dead linearization path with a block
that linearizes to zero (the zero gain block).

Set to 'off' to return a linearized model that includes all of the
states of the model.

IgnoreDiscreteStates Set to 'on' when performing continuous linearization
(SampleTime set to 0) to remove any discrete states from the
linearization and accept the D value for all blocks with discrete
states. Set to 'off' (default) to include discrete states.
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RateConversionMethod When you linearize a multirate system, set this option to one of the
following rate conversion methods:

• 'zoh' (default) to use the zero order rate conversion method
• 'tustin' to use the Tustin (bilinear) method
• 'prewarp' to use the Tustin approximation with prewarping
• 'upsampling_zoh' to upsample discrete states when possible

and to use 'zoh' otherwise
• 'upsampling_tustin' to upsample discrete states when

possible and to use 'tustin' otherwise
• 'upsampling_prewarp' to upsample discrete states when

possible and to use 'prewarp' otherwise

Note: When you select 'prewarp' or 'upsampling_prewarp',
set the PreWarpFreq option to the desired prewarp frequency.

Note: You can only upsample when you convert discrete states to
a new sample time that is an integer-value-times faster than the
sampling time of the original system.

For more information, and examples, on methods and algorithms
for rate conversions and linearization of multirate models, see:

• Linearization of Multirate Models
• Linearization Using Different Rate Conversion Methods
• “Continuous-Discrete Conversion Methods” in the Control

System Toolbox documentation
PreWarpFreq The critical frequency Wc (in rad/sec) used by the 'prewarp'

option when linearizing a multirate system.
UseExactDelayModel Set to 'on' to return a linear model with an exact delay

representation. Set to 'off' (default) to return a model with
approximate delays.
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NumericalPertRel Set the perturbation level for obtaining the linear model (default
value is 1e-5). The perturbation of the system's states is specified
by:

NumericalPertRel NumericalPertRel+ ¥ ¥
-

10
3

x

The perturbation of the system's inputs is specified by:

NumericalPertRel NumericalPertRel+ ¥ ¥
-

10
3

u

NumericalXPert Individually set the perturbation levels for the system's states
using an operating point object. Use the operpoint function to
create an operating point object for the model.

NumericalUPert Individually set the perturbation levels for the system's inputs
using an operating point object. Use the operpoint function to
create an operating point object for the model.

OptimizationOptions Set options for use with the optimization algorithms. These options
are the same as those set with optimset. For more information on
these algorithms, see the Optimization Toolbox documentation.

OptimizerType Set optimizer type to be used by trim optimization if the
Optimization Toolbox software is installed. The available optimizer
types are:
• graddescent_elim, the default optimizer, enforces an equality

constraint to force the time derivatives of states to be zero (dx/
dt=0, x(k+1)=x(k)) and the output signals to be equal to their
specified ‘Known’ value. The optimizer fixes the states, x, and
inputs, u, that are marked as ‘Known’ in an operating point
specification and then optimizes the remaining variables.

• graddescent, enforces an equality constraint to force the time
derivatives of states to be zero (dx/dt=0, x(k+1)=x(k)) and
the output signals to be equal to their specified ‘Known’ value.
findop also minimizes the error between the states, x, and
inputs, u, that are marked as ‘Known’ in an operating point
specification. If there are not any inputs or states marked as
‘Known’, findop attempts to minimize the deviation between
the initial guesses for x and u and their trimmed values.
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• lsqnonlin fixes the states, x, and inputs, u, that are marked
as 'Known' in an operating point specification and optimizes
the remaining variables. The algorithm then tries to minimize
both the error in the time derivatives of the states (dx/dt=0,
x(k+1)=x(k)) and the error between the outputs and their
specified 'Known' value.

  • simplex uses the same cost function as lsqnonlin with the
direct search optimization routine found in fminsearch.

  See the Optimization Toolbox documentation for more information
on these algorithms. If you do not have the Optimization
Toolbox software, you can access the documentation at http://
www.mathworks.com/support/.

DisplayReport Set to 'on' to display the operating point summary report when
running findop. Set to 'off' to suppress the display of this
report.

See Also
findop | linearize

http://www.mathworks.com/support/
http://www.mathworks.com/support/
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operpoint
Create operating point for Simulink model

Syntax

op = operpoint('sys')

Alternatives

As an alternative to the operpoint function, create operating points in the Linear
Analysis Tool. See “Steady-State Operating Points (Trimming) from Specifications” on
page 1-13.

Description

op = operpoint('sys')  returns an object, op, containing the operating point of a
Simulink model, sys. Use the object with the function linearize to create linearized
models. The operating point object properties are:

• “Model” on page 6-137
• “States” on page 6-137
• “Inputs” on page 6-138
• “Time” on page 6-138

Edit the properties of this object directly or with the set function.

Model

Model specifies the name of the Simulink model that this operating point object refers to.

States

States describes the operating points of states in the Simulink model. The States
property is a vector of state objects that contains the operating point values of the states.
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There is one state object per block that has a supported state in the Simulink model. (For
a list of supported states for operating point computations, see “Simulink Model States
Included in Operating Point Object”.)

The States object has the following properties:

Nx Number of states in the block. This property is read-only.
Block Block with which the states are associated.
x Vector containing the values of states in the block.
Ts Vector containing the sample time and offset for the state.
SampleType Set this value to CSTATE, for a continuous state, or DSTATE

for a discrete state.
inReferencedModel Set this value to 1, when the state is inside a referenced

model, or 0, when it is not.
Description Text string describing the block.

Inputs

Inputs is a vector of input objects that contains the input levels at the operating point.
There is one input object per root-level inport block in the Simulink model. The Inputs
object has the following properties:

Block Inport block with which the input vector is associated
PortWidth Width of the corresponding inport
u Vector containing the input level at the operating point
Description Text string describing the input

Time

Time specifies the time at which any time-varying functions in the model are evaluated.

Examples

To create an operating point object for the Simulink model magball, type:
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op = operpoint('magball')

which returns the following:

 Operating Point for the Model magball.

 (Time-Varying Components Evaluated at time t=0)

States: 

----------

(1.) magball/Controller/PID Controller/Filter

      x: 0            

(2.) magball/Controller/PID Controller/Integrator

      x: 14           

(3.) magball/Magnetic Ball Plant/Current

      x: 7            

(4.) magball/Magnetic Ball Plant/dhdt

      x: 0            

(5.) magball/Magnetic Ball Plant/height

      x: 0.05         

 

Inputs: None 

----------

MATLAB software displays the name of the model, the time at which any time-varying
functions in the model are evaluated, the names of blocks containing states, and the
values of the states at the operating point. In this example there are four blocks that
contain states in the model and four entries in the States object. The first entry
contains two states. MATLAB also displays the Inputs although there are not any in
this model. To view the properties of op in more detail, use the get function.

See Also
get | linearize | set | operspec | update
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operspec
Operating point specifications

Syntax

opspec = operspec(sys)

Description

opspec = operspec(sys) returns the operating point specifications object for steady
state operating point analysis using findop. The Simulink model must be open.

Input Arguments

sys

Simulink model name, specified as a string inside single quotes (' ').

Default:

Output Arguments

opspec

Operating point specification object.

After creating the operating point object, you can modify the operating point states and
input levels. For example, opspec.States(1).Known = 1 specifies that the first model
state value is known, and the value of the known state opspec.States(1).x = 2.

The operating point object has these properties:

• Model — Simulink model name. String.
• States — State operating point specification. Vector of data structures, where each

data structure represents the supported states of one Simulink block. (For a list of
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supported states for operating point objects, see “Simulink Model States Included in
Operating Point Object”.)

Each States structure has these fields:

x Simulink block state values, specified as a vector of states.
This vector includes all supported states.

When you set the value of a state that you want fixed
during operating-point search with findop, also set the
Known field of the States property for that state to 1.

Known Known state value specification:

• 1 — Known value that is fixed during operating point
search.

• 0 (default) — Unknown value to be found by
optimization.

When you set this field to 1 to fix a state during operating-
point search, also specify the desired operating-point value
of that state using the x field of the States structure.

SteadyState Steady state value specification:

• 1 (default) — Equilibrium state.
• 0 — Nonequilibrium state.

Min Minimum bounds on the state value, specified as a scalar
or vector.

Max Maximum bounds on the state value, specified as a scalar
or vector.

Ts (Only for discrete-time states) Sample time and offset of
each Simulink block state, specified as a vector.

Description Block state description, specified as a string.
Nx(read only) Number of states in the Simulink block.
Block Simulink block name.
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SampleType State time rate can have the values:

• 'CSTATE' — Continuous-time state
• 'DSTATE' — Discrete—time state.

inReferencedModel Vector indicating whether each state is inside a reference
model:

• 1 — State is inside a reference model.
• 0 — State is in the current model file.

• Inputs — Input level specifications at the operating point. Vector of input
specification objects, where each object represents the input levels of one root-
level inport block in the Simulink block. Each input specification object has these
properties:

u Inport block input levels at the operating point, specified
as a vector of input levels.

Also set the Known field of the Inputs property for known
input levels that remain fixed during operating point
search.

Known Known input level specification:

• 1 — Known input level that is fixed during operating
point search.

• 0 (default) — Unknown input level to be found by
optimization.

Also specify the known operating point input levels using
the u property of the input specification object.

Min Minimum bounds on the input level, specified as a scalar
or vector.

Max Maximum bounds on the input level, specified as a scalar
or vector.

Description Inport block input description, specified as a string.
Block Inport block name.
PortWidth Number of inport block signals.
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• Outputs — Output level specifications at the operating point. Vector of output
specification objects, where each object represents one output specification per root-
level output block in the Simulink block. You can constrain additional output levels
using addoutputspec to add another output specification.

Each output specification object has these properties:

y Outport block output levels at the operating point,
specified as a vector of output levels.

Also set the Known field of the Outputs property for
known output levels that remain fixed during operating
point search.

Known Known output level specification:

• 1 — Known output level constraint that must be met
during operating point search.

• 0 (default) — Unknown input level to be found by
optimization.

Also specify the known operating point output levels using
the y property of the output specification object.

Min Minimum bounds on the output level, specified as a scalar
or vector.

Max Maximum bounds on the output level, specified as a scalar
or vector.

Description Outport block input description, specified as a string.
Block Outport block name.
PortWidth Number of outport block signals.

• Time — Time instants for evaluating the time-varying functions in the model.

Examples
Steady-State Operating Point (Trimming) From Specifications

This example shows how to use findop to compute an operating point of a model from
specifications.
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1 Open Simulink model.

sys = 'watertank';

load_system(sys);

2 Create operating point specification object.

opspec = operspec(sys)

By default, all model states are specified to be at steady state.

 Operating Specification for the Model watertank.

 (Time-Varying Components Evaluated at time t=0)

States: 

----------

(1.) watertank/PID Controller/Integrator

      spec:  dx = 0,  initial guess:             0

(2.) watertank/Water-Tank System/H

      spec:  dx = 0,  initial guess:             1

Inputs: None 

----------

Outputs: None 

----------

operspec extracts the default operating point of the Simulink model with two
states. The model does not have any root-level inport blocks and no root-level outport
blocks or output constraints.

3 Configure specifications for the first model state.

opspec.States(1).SteadyState = 1;

opspec.States(1).x = 2;

opspec.States(1).Min = 0;

The first state must be at steady state and have an initial value of 2 with a lower
bound of 0.

4 Configure specifications for the second model state.

opspec.States(2).Known = 1;

opspec.States(2).x = 10;
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The second state sets the desired height of the water in the tank at 10. Configuring
the height as a known value keeps this value fixed when computing the operating
point.

5 Find the operating point that meets these specifications.

[op,opreport] = findop(sys,opspec)

bdclose(sys);

opreport describes how closely the optimization algorithm met the specifications at
the end of the operating point search.

 Operating Report for the Model watertank.

 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.

States: 

----------

(1.) watertank/PID Controller/Integrator

      x:          1.26      dx:             0 (0)

(2.) watertank/Water-Tank System/H

      x:            10      dx:             0 (0)

Inputs: None 

----------

Outputs: None 

----------

dx indicates the time derivative of each state. The actual dx values of zero indicate
that the operating point is at steady state. The desired dx value is in parentheses.

Initialize Steady-State Operating Point Search Using Simulation

This example shows how to use findop to compute an operating point of a model from
specifications, where the initial state values are extracted from a simulation snapshot.

1 Open Simulink model.

sys = 'watertank';

load_system(sys);

2 Extract an operating point from simulation after 10 time units.

opsim = findop(sys,10);



6 Alphabetical List

6-146

3 Create operating point specification object.

By default, all model states are specified to be at steady state.

opspec = operspec(sys);

4 Configure initial values for operating point search.

opspec = initopspec(opspec,opsim);

5 Find the steady state operating point that meets these specifications.

[op,opreport] = findop(sys,opspec)

bdclose(sys);

opreport describes the optimization algorithm status at the end of the operating
point search.

 Operating Report for the Model watertank.

 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.

States: 

----------

(1.) watertank/PID Controller/Integrator

      x:          1.26      dx:             0 (0)

(2.) watertank/Water-Tank System/H

      x:            10      dx:     -1.1e-014 (0)

Inputs: None 

----------

Outputs: None 

----------

dx, which is the time derivative of each state, is effectively zero. This value of the
state derivative indicates that the operating point is at steady state.

Operating Point (Trim Analysis) With Output Constraint

This example shows how to use addoutputspec to specify an output constraint to the
operating point specification object for computing the operating point.

1 Open Simulink model.

sys = 'scdspeed';
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load_system(sys);

2 Create operating point specification object.

opspec = operspec(sys)

By default, opspec specifies that the operating point is at steady state, or
equilibrium.

 Operating Specification for the Model scdspeed.

 (Time-Varying Components Evaluated at time t=0)

States: 

----------

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar

      spec:  dx = 0,  initial guess:         0.543

(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s

      spec:  dx = 0,  initial guess:           209

Inputs: 

----------

(1.) scdspeed/Throttle  perturbation

      initial guess: 0            

Outputs: None 

----------

operspec extracts the default operating point of the Simulink model with two states
and one root-level inport block. There are no root-level outport blocks or output
constraints.

3 Fix the first output port of the Vehicle Dynamics to 2000 RPM.

opspec = addoutputspec(op_spec,'scdspeed/rad//s to rpm',1);

opspec.Outputs.Known = 1;

opspec.Outputs.y = 2000;

4 Find the operating point that meets this specification.

op = findop(sys,op_spec)

 Operating Point Search Report:

---------------------------------

 Operating Report for the Model scdspeed.

 (Time-Varying Components Evaluated at time t=0)
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Operating point specifications were successfully met.

States: 

----------

(1.) scdspeed/Throttle & Manifold/Intake Manifold/p0 = 0.543 bar

      x:         0.544      dx:     2.66e-013 (0)

(2.) scdspeed/Vehicle Dynamics/w = T//J w0 = 209 rad//s

      x:           209      dx:    -8.48e-012 (0)

Inputs: 

----------

(1.) scdspeed/Throttle  perturbation

      u:       0.00382    [-Inf Inf]

Outputs: 

----------

(1.) scdspeed/rad//s to rpm

      y:        2e+003    (2e+003)

More About

Tips

• Use get to display the operating point specification object properties.

See Also
addoutputspec | findop | update
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set
Set properties of linearization I/Os and operating points

Syntax

set(ob)

set(ob,'PropertyName',val)

Description

set(ob) displays all editable properties of the object, ob, which can be a linearization I/
O object, an operating point object, or an operating point specification object. Create ob
using findop, getlinio, linio, operpoint, or operspec.

set(ob,'PropertyName',val)  sets the property, PropertyName, of the object, ob,
to the value, val. The object, ob, can be a linearization I/O object, an operating point
object, or an operating point specification object. Create ob using findop, getlinio,
linio, operpoint, or operspec.

ob.PropertyName = val is an alternative notation for assigning the value, val, to
the property, PropertyName, of the object, ob. The object, ob, can be a linearization I/
O object, an operating point object, or an operating point specification object. Create ob
using findop, getlinio, linio, operpoint, or operspec.

Examples

Create an operating point object for the Simulink model, magball:

op_cond=operpoint('magball');

Use the set function to get a list of all editable properties of this object:

set(op_cond)

This function returns the properties of op_cond.
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ans = 

     Model: {}

    States: {}

    Inputs: {}

      Time: {}

To set the value of a particular property of op_cond, provide the property name and the
desired value of this property as arguments to set. For example, to change the name
of the model associated with the operating point object from 'magball' to 'Magnetic
Ball', type:

set(op_cond,'Model','Magnetic Ball')

To view the property value and verify that the change was made, type:

op_cond.Model

which returns

ans =

Magnetic Ball

Because op_cond is a structure, you can set any properties or fields using dot-notation.
First, produce a list of properties of the second States object within op_cond, as follows:

set(op_cond.States(2))

which returns

ans = 

                   Nx: {}

                Block: {}

            StateName: {}

                    x: {}

                   Ts: {}

           SampleType: {}

    inReferencedModel: {}

          Description: {}

Now, use dot-notation to set the x property to 8:

op_cond.States(2).x=8;

To view the property and verify that the change was made, type
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op_cond.States(2)

which displays

(1.) magball/Magnetic Ball Plant/Current

      x: 8       

See Also
findop | get | linio | operpoint | operspec | setlinio
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setlinio

Specify linearization input/output (I/O) points for Simulink model, Linear Analysis Plots
block, or Model Verification block

Syntax

oldio = setlinio('sys',io)

oldio = setlinio('blockpath',io)

Alternatives

As an alternative to the setlinio function, edit linearization I/Os annotated in the
Simulink model using the:

•
Exact Linearization tab of the Linear Analysis Tool. In the Setup section, click 
to view and edit the linearization I/Os. The icon appears only when Analysis I/Os is
set to Model I/Os.

• Linearization inputs/outputs table and Click a signal in the model to select
it in the Linearizations tab of the Block Parameters dialog box for Linear Analysis
Plots or Model Verification blocks.

Description

oldio = setlinio('sys',io)  assigns the settings in the vector of linearization
input/output (I/O) objects, io, to the Simulink model, sys. These settings appear as
annotations on the signal lines. oldio contains the old I/O settings. Use the function
getlinio or linio to create the linearization I/O objects. You can save I/O objects to
disk in a MAT-file and use them later to restore linearization settings in a model.

oldio = setlinio('blockpath',io) assigns the settings in io as the linearization
I/Os in a Linear Analysis Plots block or a Model Verification block. blockpath is the full
path to the block.



 setlinio

6-153

Examples

This example shows how to assign linearization input/output settings to a Simulink
model.

Before assigning I/O settings to a Simulink model using setlinio, you must create
a vector of I/O objects representing linearization annotations, such as input points or
output points, on a Simulink model.

1 Open a Simulink model.

magball

2 Right-click the signal line between the Magnetic Ball Plant and the Controller.
Select Linear Analysis Points > Input Perturbation to place an input point on
this signal line. A small arrow pointing to a small circle just above the signal line
represents the input point. The input point is not the output of the block, rather it is
an additive input to the signal.

3 Right-click the signal line after the Magnetic Ball Plant. Select Linear Analysis
Points > Output Measurement from the menu to place an output point on this
signal line.

The model diagram should now look similar to the following figure:

4 Create an I/O object with the getlinio function:

io=getlinio('magball')

5 Modify io to compute the plant transfer function. Edit the object or use the set
function.

io(2).Type='openoutput';

6 Assign the new settings in io to the model.
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oldio=setlinio('magball',io)

This assignment returns the old I/O settings (that have been replaced by the settings
in io).

2x1 vector of Linearization IOs: 

--------------------------

1. Linearization input perturbation located at the following signal:

- Block: magball/Controller

- Port: 1

2. Linearization output measurement located at the following signal:

- Block: magball/Magnetic Ball Plant

- Port: 1

The model diagram now looks similar to the following figure.

Update linearization input/output settings in a Linear Analysis Plots block

This example shows how to update linearization input/output settings in a Linear
Analysis Plots block.

1 Open the watertank model, and specify input and output (I/O).

a Right-click the Desired Water Level output signal, and select Linear Analysis
Points > Input Perturbation.

b Right-click the Water-Tank System output signal, and select Linear Analysis
Points > Output Measurement.

The linearization I/O markers appear in the model, as shown in the next figure.
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Alternatively, you can use linio.
2 Drag and drop a Bode Plot block from the Simulink Control Design Linear Analysis

Plots library into the Simulink Editor. When you drag and drop the block, the block
I/Os are set to the model I/Os.

3 Find all I/Os used by the Bode Plot block.

io = getlinio('watertank/Bode Plot')

The following results appear at the MATLAB prompt:
2x1 vector of Linearization IOs: 

--------------------------

1. Linearization input perturbation located at the following signal:

- Block: watertank/Desired  Water Level

- Port: 1

2. Linearization output measurement located at the following signal:

- Block: watertank/Water-Tank System

- Port: 1

4 Specify the linearization output to be open loop.

io(2).Type = 'openoutput';

Note: The loop opening does not affect the model I/Os.
5 Update the I/O in the Bode Plot block.

oldio = setlinio('watertank/Bode Plot',io);

See Also
get | getlinio | set  | linio
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setxu
Set states and inputs in operating points

Syntax

op_new=setxu(op_point,x,u)

Alternatives

As an alternative to the setxu function, set states and inputs of operating points with
the Simulink Control Design GUI.

Description

op_new=setxu(op_point,x,u)  sets the states and inputs in the operating point,
op_point, with the values in x and u. A new operating point containing these values,
op_new, is returned. The variable x can be a vector or a structure with the same format
as those returned from a Simulink simulation. The variable u can be a vector. Both x and
u can be extracted from another operating point object with the getxu function.

Examples

Initialize Operating Point Object Using State Values from Simulation

Export state values from a simulation and use the exported values to initialize an
operating point object.

Open the Simulink model. This example uses the model scdplane.

open_system('scdplane')

Select Simulation > Model Configuration Parameters. In the Configuration
Parameters dialog box, select Data Import/Export. In the Save to workspace pane,
select Final states. Click OK. These selections save the final states of the model to the
workspace after a simulation.
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Simulate the model. After the simulation, a new variable, xFinal, appears in the
workspace. This variable is a vector containing the final state values.

Create an operating point object for scdplane.

op_point = operpoint('scdplane')

 Operating Point for the Model scdplane.

 (Time-Varying Components Evaluated at time t=0)

States: 

----------

(1.) scdplane/Actuator Model

      x: 0            

(2.) scdplane/Aircraft Dynamics Model/Transfer Fcn.1

      x: 0            

(3.) scdplane/Aircraft Dynamics Model/Transfer Fcn.2

      x: 0            

(4.) scdplane/Controller/Alpha-sensor Low-pass Filter

      x: 0            

(5.) scdplane/Controller/Pitch Rate Lead Filter

      x: 0            

(6.) scdplane/Controller/Proportional plus integral compensator

      x: 0            

(7.) scdplane/Controller/Stick Prefilter

      x: 0            

(8.) scdplane/Dryden Wind Gust Models/Q-gust model

      x: 0            

(9.) scdplane/Dryden Wind Gust Models/W-gust model

      x: 0            

      x: 0            

Inputs: 

----------

(1.) scdplane/u

      u: 0    

All states are initially set to 0.

Initialize the states in the operating point object to the values in xFinal. Set the input to
be 9.

newop = setxu(op_point,xFinal,9)

 Operating Point for the Model scdplane.
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 (Time-Varying Components Evaluated at time t=0)

States: 

----------

(1.) scdplane/Actuator Model

      x: -0.032       

(2.) scdplane/Aircraft Dynamics Model/Transfer Fcn.1

      x: 0.56         

(3.) scdplane/Aircraft Dynamics Model/Transfer Fcn.2

      x: 678          

(4.) scdplane/Controller/Alpha-sensor Low-pass Filter

      x: 0.392        

(5.) scdplane/Controller/Pitch Rate Lead Filter

      x: 0.133        

(6.) scdplane/Controller/Proportional plus integral compensator

      x: 0.166        

(7.) scdplane/Controller/Stick Prefilter

      x: 0.1          

(8.) scdplane/Dryden Wind Gust Models/Q-gust model

      x: 0.114        

(9.) scdplane/Dryden Wind Gust Models/W-gust model

      x: 0.46         

      x: -2.05        

Inputs: 

----------

(1.) scdplane/u

      u: 9    

See Also
getxu | initopspec | operpoint | operspec
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slLinearizer
Interface for batch linearization of Simulink models

Syntax

sllin = slLinearizer(mdl)

sllin = slLinearizer(mdl,pt)

sllin = slLinearizer(mdl,param)

sllin = slLinearizer(mdl,op)

sllin = slLinearizer(mdl,blocksub)

sllin = slLinearizer(mdl,opt)

sllin = slLinearizer(mdl,pt,op,param,blocksub,opt)

Description

sllin = slLinearizer(mdl) creates an slLinearizer interface, sllin, for
linearizing the Simulink model, mdl. The interface adds the linear analysis points
marked in the model as analysis points of sllin. The interface additionally adds the linear
analysis points that imply an opening as permanent openings.

sllin = slLinearizer(mdl,pt) adds the specified point to the list of analysis points
for sllin, ignoring linear analysis points marked in the model.

sllin = slLinearizer(mdl,param) specifies the parameters whose values you want
to vary when linearizing the model.

sllin = slLinearizer(mdl,op) specifies the operating points for linearizing the
model.

sllin = slLinearizer(mdl,blocksub) specifies substitute linearizations of blocks
and subsystems. Use this syntax, for example, to specify a custom linearization for a
block. You can also use this syntax for blocks that do not linearize successfully, such as
blocks with discontinuities or triggered subsystems.

sllin = slLinearizer(mdl,opt) configures the linearization algorithm options.

sllin = slLinearizer(mdl,pt,op,param,blocksub,opt) uses any combination
of the input arguments pt, op, param, blocksub, and opt to create sllin.
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For example, use any of the following:

• sllin = slLinearizer(mdl,pt,param)

• sllin = slLinearizer(mdl,op,param).

If you do not specify pt, the interface adds the linear analysis points marked in the model
as analysis points. The interface additionally adds linear analysis points that imply an
opening as permanent openings.

Object Description

slLinearizer provides an interface between a Simulink model and the linearization
commands getIOTransfer, getLoopTransfer, getSensitivity, and
getCompSensitivity. Use slLinearizer to efficiently batch linearize a model. You
can configure the slLinearizer interface to linearize a model at a range of operating
points and specify variations for model parameter values. Use interface analysis points
and permanent openings to obtain linearizations for any open-loop or closed-loop transfer
function from a model. Analyze the stability, or time-domain or frequency-domain
characteristics of the linearized models.

Commands that extract linearizations from the slLinearizer interface recompile the
Simulink model if you changed any interface properties since the last linearization. The
commands also recompile the Simulink model if you made calls to specific functions since
the last linearization. These functions include addPoint, addOpening, removePoint,
removeOpening, removeAllPoints, and removeAllOpenings.

Examples

Create and Configure slLinearizer Interface for Batch Linear Analysis

Create an slLinearizer interface for the scdcascade model. Add analysis points to
the interface to extract open- or closed-loop transfer functions from the model. Configure
the interface to vary parameters and operating points.

Open the scdcascade model.

mdl = 'scdcascade';

open_system(mdl);
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Create an slLinearizer interface for the model. Add the signals r, u1,u2, y1,y2, y1m,
and y2m to the interface.

sllin = slLinearizer(mdl,{'r','u1','u2','y1','y2','y1m','y2m'});

scdcascade contains two PID Controller blocks, C1 and C2. Suppose you want to
vary the proportional and integral gains of C2, Kp2 and Ki2, in the 10% range. Create a
structure to specify the parameter variations.

Kp2_range = linspace(0.9*Kp2,1.1*Kp2,3);

Ki2_range = linspace(0.9*Ki2,1.1*Ki2,5);

[Kp2_grid,Ki2_grid]=ndgrid(Kp2_range,Ki2_range);

params(1).Name = 'Kp2';

params(1).Value = Kp2_grid;

params(2).Name = 'Ki2';

params(2).Value = Ki2_grid;

params specifies a 3x5 parameter grid. Each point in this grid corresponds to a
combination of the Kp2 and Ki2 parameter values.

Specify params as the Parameters property of sllin.

sllin.Parameters = params;

Now, when you use commands such as getIOTransfer, getLoopTransfer,
getSensitivity, and getCompSensitivity, the software returns a linearization for
each parameter grid point specified by sllin.Parameters.
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Suppose you want to linearize the model at multiple snapshot times, for example at t =
{0,1,2}. To do so, configure the OperatingPoints property of sllin.

sllin.OperatingPoints = [0 1 2];

You can optionally configure the linearization options and specify substitute
linearizations for blocks and subsystems in your model. After fully configuring
sllin, use the getIOTransfer, getLoopTransfer, getSensitivity, and
getCompSensitivity commands to linearize the model as required.

• “Batch Compute Steady-State Operating Points”
• “Specify Parameter Samples”
• “Vary Operating Points and Obtain Multiple Transfer Functions Using

slLinearizer”
• “Vary Parameter Values and Obtain Multiple Transfer Functions Using

slLinearizer”

Input Arguments

mdl — Name of Simulink model to be linearized
string

Name of Simulink model to be linearized, specified as a string.
Example: 'scdcascade'

pt — Analysis point
string | cell array of strings | vector of linearization I/O objects

Analysis point to be added to the list of analysis points for sllin, specified as:

• String — Analysis point identifier that can be any of the following:

• Analysis point signal name, for example pt = 'torque'
• Block path for a block with a single output port, for example pt = 'Motor/PID'
• Path to block and port originating the analysis point, for example pt = 'Engine

Model/1' or pt = 'Engine Model/torque'
• Cell array of strings — Specifies multiple analysis point identifiers. For example:

pt = {'torque','Motor/PID'}
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• Vector of linearization I/O objects — Use linio to create pt. For example:

pt(1) = linio('scdcascade/setpoint',1,'input');

pt(2) = linio('scdcascade/Sum',1,'output');

Here, pt(1) specifies an input, and pt(2) specifies an output.

The interface adds all the points specified by pt and ignores their I/O types. The
interface additionally adds all 'loopbreak' type signals as permanent openings.

param — Parameter samples for linearizing mdl
structure | structure array

Parameter samples for linearizing mdl, specified as:

• Structure — For a single parameter, param must be a structure with the following
fields:

• Name — Parameter name, specified as a string or MATLAB expression
• Value — Parameter sample values, specified as a double array

For example:

param.Name = 'A';

param.Value = linspace(0.9*A,1.1*A,3);

• Structure array — Vary the value of multiple parameters. For example, suppose you
want to vary the value of the A and b model parameters in the 10% range:

[A_grid,b_grid] = ndgrid(linspace(0.9*A,1.1*A,3),...

                           linspace(0.9*b,1.1*b,3));

params(1).Name = 'A';

params(1).Value = A_grid;

params(2).Name = 'b';

params(2).Value = b_grid;

If param specifies tunable parameters only, then the software batch linearizes the model
using a single compilation. If you additionally configure sllin.OperatingPoints with
operating point objects only, the software uses single model compilation.

op — Operating point for linearizing mdl
operating point object | array of operating point objects | array of positive scalars

Operating point for linearizing mdl, specified as:
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• Operating point object, created using findop.

For example:

op = findop('magball',operspec('magball'));

• Array of operating point objects, specifying multiple operating points.

For example:

op = findop('magball',[10 20]);

• Array of positive scalars, specifying simulation snapshot times.

For example:

op = [1 4.2];

If you configure sllin.Parameters, then specify op as one of the following:

• Single operating point.
• Array of operating point objects whose size matches that of the parameter grid

specified by the Parameters property. When you batch linearize mdl, the software
uses only one model compilation.

• Multiple snapshot times. When you batch linearize mdl, the software simulates the
model for each snapshot time and parameter grid point combination. This operation
can be computationally expensive.

blocksub — Substitute linearizations for blocks and model subsystems
structure | structure array

Substitute linearizations for blocks and model subsystems. Use blocksub to specify
a custom linearization for a block or subsystem. You also can use blocksub for
blocks that do not have analytic linearizations, such as blocks with discontinuities or
triggered subsystems. Specify multiple substitute linearizations for a block to obtain
a linearization for each substitution (batch linearization). Use this functionality, for
example, to study the effects of varying the linearization of a Saturation block on the
model dynamics.

blocksub is an n-by-1 structure, where n is the number of blocks for which you specify
the linearization. blocksub has these fields:

• Name — Block path corresponding to the block for which you want to specify the
linearization.
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blocksub.Name is a string of the form model/subsystem/block that uniquely
identifies a block in the model.

• Value — Desired linearization of the block, specified as one of the following:

• Double, for example 1. Use for SISO models only. For models having either
multiple inputs or multiple outputs, or both, use an array of doubles. For example,
[0 1]. Each array entry specifies a linearization for the corresponding I/O
combination.

• LTI model, uncertain state-space model (requires Robust Control Toolbox
software), or uncertain real object (requires Robust Control Toolbox software).
Model I/Os must match the I/Os of the block specified by Name. For example,
zpk([],[-10 -20],1).

• Array of LTI models, uncertain state-space models, or uncertain real objects. For
example, [zpk([],[-10 -20],1); zpk([],[-10 -50],1)].

If you vary model parameter values, then the LTI model array size must match the
grid size.

• Structure, with the following fields (for information about each field, click the field
name)

• Specification

Block linearization, specified as a string. The string can include a MATLAB
expression or function that returns one of the following:

• Linear model in the form of a D-matrix
• Control System Toolbox LTI model object
• Robust Control Toolbox uncertain state space or uncertain real object

(requires Robust Control Toolbox software)

If blocksub.Value.Specification is a MATLAB expression, this
expression must follow the resolution rules , as described in “Symbol
Resolution”.

If blocksub.Value.Specification is a function, this function must have
one input argument, BlockData, which is a structure that the software creates
automatically and passes to the specification function. BlockData has the
following fields:
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• BlockName is the name of the Simulink block with the specified
linearization.

• Parameters is a structure array containing the evaluated values for the
block. Each element of the array has the fields 'Name' and 'Value', which
contain the name and evaluated value, respectively, for the parameter.

• Inputs is a structure that has the following fields:

• BlockName — Contains the name of the block whose output connects
to the input of the block whose linearization you are specifying. For
example, if you specify the linearization of a block called Dynamics, and
the second input of Dynamics is driven by a signal from a block called
Torque, then BlockData.Inputs(2).BlockName is the full block path
name of Torque.

• PortIndex — Identifies which output port of BlockName corresponds
to the input of the block whose linearization you are specifying. For
example, if the third output from Torque drives the second input of
Dynamics, then BlockData.Inputs(2).PortIndex = 3.

• Values — The value of the signal specified by BlockName and
PortIndex. If this signal is a vector-valued signal, Values is a vector of
corresponding dimension.

• ny is the number of output channels of the block linearization.
• nu is the number of input channels of the block linearization.

• Type

Specification type, specified as one of these strings:
'Expression'

'Function'

• ParameterNames

Linearization function parameter names, specified as a comma-separated list of
strings. Specify only when blocksub.Value.Type = 'Function' and your
block linearization function requires input parameters. These parameters only
impact the linearization of the specified block

You also must specify the corresponding blocksub.Value.ParameterValues
field.
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• ParameterValues

Linearization function parameter values that correspond to
blocksub.Values.ParameterNames. Specify only when
blocksub.Value.Type = 'Function'.

blocksub.Value.ParameterValues is a comma separated list of values. The
order of parameter values must correspond to the order of parameter names in
blocksub.Value.ParameterNames.

BlockLinearization is a state-space (ss) model that is the current default
linearization of the block. You can use BlockData.BlockLinearization in
the specification function to specify a block linearization that depends on the
default linearization, such as the default linearization multiplied by a time
delay.

opt — Linearization algorithm options
options set created using linearizeOptions

Linearization algorithm options, specified as an options set created using
linearizeOptions.

Example: opt =
linearizeOptions('LinearizationAlgorithm','numericalpert')

Properties

slLinearizer objects properties include:

Parameters

Parameter samples for linearizing mdl, specified as a structure or a structure array.

Set this property using the param input argument or dot notation (sllin.Parameters
= param). param must be one of the following:

• Structure — For a single parameter, param must be a structure with the following
fields:

• Name — Parameter name, specified as a string or MATLAB expression
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• Value — Parameter sample values, specified as a double array

For example:

param.Name = 'A';

param.Value = linspace(0.9*A,1.1*A,3);

• Structure array — Vary the value of multiple parameters. For example, suppose you
want to vary the value of the A and b model parameters in the 10% range:

[A_grid,b_grid] = ndgrid(linspace(0.9*A,1.1*A,3),...

                           linspace(0.9*b,1.1*b,3));

params(1).Name = 'A';

params(1).Value = A_grid;

params(2).Name = 'b';

params(2).Value = b_grid;

If param specifies tunable parameters only, then the software batch linearizes the model
using a single compilation. If you additionally configure sllin.OperatingPoints with
operating point objects only, the software uses single model compilation.

OperatingPoints

Operating points for linearizing mdl, specified as an operating point object, array of
operating point objects, or array of positive scalars.

Set this property using the op input argument or dot notation
(sllin.OperatingPoints = op). op must be one of the following:

• Operating point object, created using findop.

For example:

op = findop('magball',operspec('magball'));

• Array of operating point objects, specifying multiple operating points.

For example:

op = findop('magball',[10 20]);

• Array of positive scalars, specifying simulation snapshot times.

For example:

op = [1 4.2];
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If you configure sllin.Parameters, then specify op as one of the following:

• Single operating point.
• Array of operating point objects whose size matches that of the parameter grid

specified by the Parameters property. When you batch linearize mdl, the software
uses only one model compilation.

• Multiple snapshot times. When you batch linearize mdl, the software simulates the
model for each snapshot time and parameter grid point combination. This operation
can be computationally expensive.

BlockSubstitutions

Substitute linearizations for blocks and model subsystems, specified as a structure or
structure array.

Use this property to specify a custom linearization for a block or subsystem. You also can
use this syntax for blocks that do not have analytic linearizations, such as blocks with
discontinuities or triggered subsystems.

Set this property using the blocksub input argument or dot notation
(sllin.BlockSubstitutions = blocksubs). For information about the required
structure, see blocksub.

Options

Linearization algorithm options, specified as an options set created using
linearizeOptions.

Set this property using the opt input argument or dot notation (sllin.Options =
opt).

Model

Name of the Simulink model to be linearized, specified as a string by the input argument
mdl.

More About
Analysis Points

Analysis points, used by the slLinearizer and slTuner interfaces, identify locations
within a model that are relevant for linear analysis and control system tuning. You
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use analysis points as inputs to the linearization commands, such as getIOTransfer,
getLoopTransfer, getSensitivity, and getCompSensitivity. As inputs to the
linearization commands, analysis points can specify any open- or closed-loop transfer
function in a model. You can also use analysis points to specify design requirements
when tuning control systems using commands such as systune (requires a Robust
Control Toolbox license).

Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an analysis point.

You can add analysis points to an slLinearizer or slTuner interface, s, when you
create the interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

Alternatively, you can use the addPoint command.

To view all the analysis points of s, type s at the command prompt to display the
interface contents. For each analysis point of s, the display includes the block name and
port number and the name of the signal that originates at this point. You can also use
getPoints to programmatically obtain a list of all the analysis points.

For more information about how you can use analysis points, see “Managing Signals in
Control System Analysis and Design”.

Permanent Openings

Permanent openings, used by the slLinearizer and slTuner interfaces, identify
locations within a model where the software breaks the signal flow. The software
enforces these openings for linearization and tuning. Use permanent openings to isolate
a specific model component. Suppose you have a large-scale model capturing aircraft
dynamics and you want to perform linear analysis on the airframe only. You can use
permanent openings to exclude all other components of the model. Another example is
when you have cascaded loops within your model and you want to analyze a specific loop.

Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an opening.

You can add permanent openings to an slLinearizer or slTuner interface, s, when
you create the interface or by using the addOpening command. To remove a location
from the list of permanent openings, use the removeOpening command.
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To view all the openings of s, type s at the command prompt to display the interface
contents. For each permanent opening of s, the display includes the block name and
port number and the name of the signal that originates at this location. You can also use
getOpenings to programmatically obtain a list of all the permanent openings.

Algorithms

slLinearizer linearizes your Simulink model using the algorithms described in “Exact
Linearization Algorithm”.
• “What Is Batch Linearization?”
• “How the Software Treats Loop Openings”
• “Batch Linearization Efficiency When You Vary Parameter Values”

See Also
addOpening | addPoint | getCompSensitivity | getIOTransfer |
getLoopTransfer | getSensitivity | linearize
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addOpening

Add signal to list of openings for slLinearizer or slTuner interface

Syntax

addOpening(s,pt)

addOpening(s,blk,port_num)

addOpening(s,blk,port_num,bus_elem_name)

Description

addOpening(s,pt) adds the specified point (signal) to the list of permanent openings
for the slLinearizer or slTuner interface, s.

Use permanent openings to isolate a specific model component for the purposes of
linearization and tuning. Suppose you have a large-scale model capturing aircraft
dynamics and you want to perform linear analysis on the airframe only. You can use
permanent openings to exclude all other components of the model. Another example is
when you have cascaded loops within your model and you want to analyze a specific loop.

addOpening(s,blk,port_num) adds the signal at the specified output port of the
specified block as a permanent opening for s.

addOpening(s,blk,port_num,bus_elem_name) adds the specified bus element as a
permanent opening.

Examples

Add Opening Using Signal Name

Suppose you want to analyze only the inner-loop dynamics of the scdcascade model.
Add the outer-loop feedback signal, y1m, as a permanent opening of an slLinearizer
interface.
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Open the scdcascade model.

mdl = 'scdcascade';

open_system(mdl);

Create an slLinearizer interface for the model.

sllin = slLinearizer('scdcascade');

Add the y1m signal as a permanent opening of sllin.

addOpening(sllin,'y1m');

Add Opening Using Block Path and Port Number

Suppose you want to analyze only the inner-loop dynamics of the scdcascade model.
Add the outer-loop feedback signal, y1m, as a permanent opening of an slLinearizer
interface.

Open the scdcascade model.

mdl = 'scdcascade';

open_system(mdl);
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Create an slLinearizer interface for the model.

sllin = slLinearizer('scdcascade');

Add the y1m signal as a permanent opening of sllin.

addOpening(sllin,'scdcascade/Sum',1)

The y1m signal originates at the first (and only) port of the scdcascade/Sum block.

Add Bus Elements as Openings

Open the scdbusselection model.

mdl = 'scdbusselection';

open_system(mdl);
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Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

The COUNTERBUS signal of scdbusselection contains multiple bus elements. Add the
upper_saturation_limit and lower_saturation_limit bus elements as openings
to sllin.

blk = {'scdbusselection/COUNTERBUSCreator','scdbusselection/COUNTERBUSCreator'};

port_num = [1 1];

bus_elem_name = {'upper_saturation_limit','lower_saturation_limit'};

addOpening(sllin,blk,port_num,bus_elem_name);
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Both bus elements originate at the first (and only) port of the scdbusselection/
COUNTERBUSCreator block. Therefore, blk and port_num repeat the same element
twice.

Input Arguments

s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an
slTuner interface.

pt — Opening
string | cell array of strings | vector of linearization I/O objects

Opening to add to the list of permanent openings for s, specified as:

• String — Signal identifier that can be any of the following:

• Signal name, for example 'torque'
• Block path for a block with a single output port, for example 'Motor/PID'
• Path to block and port originating the signal, for example 'Engine Model/1' or

'Engine Model/torque'

• Cell array of strings — Specifies multiple signal identifiers. For example, pt =
{'Motor/PID','Engine Model/1'}.

• Vector of linearization I/O objects — Use linio to create pt. For example:

pt(1) = linio('scdcascade/setpoint',1)

pt(2) = linio('scdcascade/Sum',1,'output')

Here, pt(1) specifies an input, and pt(2) specifies an output. However, the software
ignores the I/O types and adds them both to the list of permanent openings for s.

blk — Block path identifying block where opening originates
string (default) | cell array of strings

Block path identifying the block where the opening originates, specified as a string or cell
array of strings.
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Dimensions of blk:

• For a single opening, specify blk as a string.

For example, blk = 'scdcascade/C1'.
• For multiple openings, specify blk as a cell array of strings. blk, port_num, and

bus_elem_name (if specified) must have the same size.

For example, blk = {'scdcascade/C1','scdcascade/Sum'}.

port_num — Port where opening originates
positive integer (default) | vector of positive integers

Port where the opening originates, specified as a positive integer or a vector of positive
integers.

Dimensions of port_num:

• For a single opening, specify port_num as a positive integer.

For example, port_num = 1.
• For multiple openings, specify port_num as a vector of positive integers. blk,

port_num, and bus_elem_name (if specified) must have the same size.

For example, port_num = [1 1].

bus_elem_name — Bus element name
string (default) | cell array of strings

Bus element name, specified as a string or cell array of strings.

Dimensions of bus_elem_name:

• For a single opening, specify bus_elem_name as a string.

For example, bus_elem_name = 'upper_saturation_limit'.
• For multiple openings, specify bus_elem_name as a cell array of strings. blk,

port_num, and bus_elem_name (if specified) must have the same size.

For example, bus_elem_name =
{'upper_saturation_limit','lower_saturation_limit'}.
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More About

Permanent Openings

Permanent openings, used by the slLinearizer and slTuner interfaces, identify
locations within a model where the software breaks the signal flow. The software
enforces these openings for linearization and tuning. Use permanent openings to isolate
a specific model component. Suppose you have a large-scale model capturing aircraft
dynamics and you want to perform linear analysis on the airframe only. You can use
permanent openings to exclude all other components of the model. Another example is
when you have cascaded loops within your model and you want to analyze a specific loop.

Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an opening.

You can add permanent openings to an slLinearizer or slTuner interface, s, when
you create the interface or by using the addOpening command. To remove a location
from the list of permanent openings, use the removeOpening command.

To view all the openings of s, type s at the command prompt to display the interface
contents. For each permanent opening of s, the display includes the block name and
port number and the name of the signal that originates at this location. You can also use
getOpenings to programmatically obtain a list of all the permanent openings.

See Also
addBlock | addPoint | linio | removeAllOpenings | removeOpening |
slLinearizer | slTuner
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addPoint
Add signal to list of analysis points for slLinearizer or slTuner interface

Syntax

addPoint(s,pt)

addPoint(s,blk,port_num)

addPoint(s,blk,port_num,bus_elem_name)

Description

addPoint(s,pt) adds the specified point to the list of analysis points for the
slLinearizer or slTuner interface, s.

Analysis points are model signals that can be used as input, output, or loop-opening
locations for analysis and tuning purposes. You use analysis points as inputs to the
linearization commands of s: getIOTransfer, getLoopTransfer, getSensitivity,
and getCompSensitivity. As inputs to the linearization commands, analysis points
can specify any open- or closed-loop transfer function in a model. You can also use
analysis points to specify tuning goals for systune.

addPoint(s,blk,port_num) adds the point that originates at the specified output port
of the specified block as an analysis point for s.

addPoint(s,blk,port_num,bus_elem_name) adds the specified bus element as an
analysis point.

Examples

Add Analysis Point Using Signal Name

Add the u1 and y1 signals of the scdcascade model to an slLinearizer interface.

Open the scdcascade model.
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mdl = 'scdcascade';

open_system(mdl);

Create an slLinearizer interface for the model.

sllin = slLinearizer('scdcascade');

Add u1 and y1 as analysis points for sllin.

addPoint(sllin,{'u1','y1'});

Add Analysis Points Using Block Path and Port Number

Suppose you want to linearize the magball model and obtain a transfer function from the
reference input to the plant output. Add the signals originating at the Design Height and
Magnetic Ball Plant blocks as analysis points to an slLinearizer interface.

Open the magball model.

open_system('magball');

Create an slLinearizer interface for the model.
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sllin = slLinearizer('magball');

Add the signals originating at the Design Height and Magnetic Ball Plant blocks as
analysis points of sllin. Both signals originate at the first (and only) port of the
respective blocks.

blk = {'magball/Desired Height','magball/Magnetic Ball Plant'};

port_num = [1 1];

addPoint(sllin,blk,port_num)

Add Bus Elements as Analysis Points

Open the scdbusselection model.

mdl = 'scdbusselection';

open_system(mdl);

Create an slLinearizer interface for the model.
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sllin = slLinearizer(mdl);

The COUNTERBUS signal of scdbusselection contains multiple bus elements. Add the
upper_saturation_limit and lower_saturation_limit bus elements as analysis
points to sllin.

blk = {'scdbusselection/COUNTERBUSCreator','scdbusselection/COUNTERBUSCreator'};

port_num = [1 1];

bus_elem_name = {'upper_saturation_limit','lower_saturation_limit'};

addPoint(sllin,blk,port_num,bus_elem_name);

Both bus elements originate at the first (and only) port of the scdbusselection/
COUNTERBUSCreator block. Therefore, blk and port_num repeat the same element
twice.

Input Arguments

s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an
slTuner interface.

pt — Analysis point
string | cell array of strings | vector of linearization I/O objects

Analysis point to add to the list of analysis points for s, specified as:

• String — Signal identifier that can be any of the following:

• Signal name, for example 'torque'
• Block path for a block with a single output port, for example 'Motor/PID'
• Path to block and port originating the signal, for example 'Engine Model/1' or

'Engine Model/torque'

To specify multiple signal identifiers, specify pt as a cell array of strings.
• Cell array of strings — Specifies multiple signal identifiers.
• Vector of linearization I/O objects — Use linio to create pt. For example:
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pt(1) = linio('scdcascade/setpoint',1)

pt(2) = linio('scdcascade/Sum',1,'output')

Here, pt(1) specifies an input, and pt(2) specifies an output. The interface adds
all the signals specified by pt and ignores the I/O types. The interface also adds all
'loopbreak' type signals as permanent openings.

blk — Block path identifying block where analysis point originates
string (default) | cell array of strings

Block path identifying the block where the analysis point originates, specified as a string
or cell array of strings.

Dimensions of blk:

• For a single point, specify blk as a string.

For example, blk = 'scdcascade/C1'.
• For multiple points, specify blk as a cell array of strings. blk, port_num, and

bus_elem_name (if specified) must have the same size.

For example, blk = {'scdcascade/C1','scdcascade/Sum'}.

port_num — Port where analysis point originates
positive integer (default) | vector of positive integers

Port where the analysis point originates, specified as a positive integer or a vector of
positive integers.

Dimensions of port_num:

• For a single point, specify port_num as a positive integer.

For example, port_num = 1.
• For multiple points, specify port_num as a vector of positive integers. blk, port_num,

and bus_elem_name (if specified) must have the same size.

For example, port_num = [1 1].

bus_elem_name — Bus element name
string (default) | cell array of strings
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Bus element name, specified as a string or cell array of strings.

Dimensions of bus_elem_name:

• For a single point, specify bus_elem_name as a string.

For example, bus_elem_name = 'upper_saturation_limit'.
• For multiple points, specify bus_elem_name as a cell array of strings. blk, port_num,

and bus_elem_name (if specified) must have the same size.

For example, bus_elem_name =
{'upper_saturation_limit','lower_saturation_limit'}.

More About

Analysis Points

Analysis points, used by the slLinearizer and slTuner interfaces, identify locations
within a model that are relevant for linear analysis and control system tuning. You
use analysis points as inputs to the linearization commands, such as getIOTransfer,
getLoopTransfer, getSensitivity, and getCompSensitivity. As inputs to the
linearization commands, analysis points can specify any open- or closed-loop transfer
function in a model. You can also use analysis points to specify design requirements
when tuning control systems using commands such as systune (requires a Robust
Control Toolbox license).

Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an analysis point.

You can add analysis points to an slLinearizer or slTuner interface, s, when you
create the interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

Alternatively, you can use the addPoint command.

To view all the analysis points of s, type s at the command prompt to display the
interface contents. For each analysis point of s, the display includes the block name and
port number and the name of the signal that originates at this point. You can also use
getPoints to programmatically obtain a list of all the analysis points.
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For more information about how you can use analysis points, see “Managing Signals in
Control System Analysis and Design”.

Permanent Openings

Permanent openings, used by the slLinearizer and slTuner interfaces, identify
locations within a model where the software breaks the signal flow. The software
enforces these openings for linearization and tuning. Use permanent openings to isolate
a specific model component. Suppose you have a large-scale model capturing aircraft
dynamics and you want to perform linear analysis on the airframe only. You can use
permanent openings to exclude all other components of the model. Another example is
when you have cascaded loops within your model and you want to analyze a specific loop.

Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an opening.

You can add permanent openings to an slLinearizer or slTuner interface, s, when
you create the interface or by using the addOpening command. To remove a location
from the list of permanent openings, use the removeOpening command.

To view all the openings of s, type s at the command prompt to display the interface
contents. For each permanent opening of s, the display includes the block name and
port number and the name of the signal that originates at this location. You can also use
getOpenings to programmatically obtain a list of all the permanent openings.

See Also
addOpening | linio | removeAllPoints | removePoint | slLinearizer |
slTuner
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getCompSensitivity

Complementary sensitivity function at specified point using slLinearizer or slTuner
interface

Syntax

sys = getCompSensitivity(s,pt)

sys = getCompSensitivity(s,pt,temp_opening)

sys = getCompSensitivity( ___ ,mdl_index)

Description

sys = getCompSensitivity(s,pt) returns the complementary sensitivity function
at the specified analysis point for the model associated with the slLinearizer or
slTuner interface, s.

The software enforces all the permanent openings specified for s when it calculates
sys. If you configured either s.Parameters, or s.OperatingPoints, or both,
getCompSensitivity performs multiple linearizations and returns an array of
complementary sensitivity functions.

sys = getCompSensitivity(s,pt,temp_opening) considers additional, temporary,
openings at the point specified by temp_opening. Use an opening, for example, to
calculate the complementary sensitivity function of an inner loop with the outer loop
open.

sys = getCompSensitivity( ___ ,mdl_index) returns a subset of the batch
linearization results. mdl_index specifies the index of the linearizations of interest, in
addition to any of the input arguments in previous syntaxes.

Use this syntax for efficient linearization, when you want to obtain the complementary
sensitivity function for only a subset of the batch linearization results.
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Examples
Complementary Sensitivity Function at Analysis Point

Obtain the complementary sensitivity function, calculated at the plant output, for the
ex_scd_simple_fdbk model.

Open the ex_scd_simple_fdbk model.

mdl = 'ex_scd_simple_fdbk';

open_system(mdl);

In this model:
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Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

To calculate the complementary sensitivity function at the plant output, use the y signal
as the analysis point. Add this point to sllin.

addPoint(sllin,'y');

Obtain the complementary sensitivity function at y.

sys = getCompSensitivity(sllin,'y');

tf(sys)

ans =

 

  From input "y" to output "y":

   -3

  -----
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  s + 8

 

Continuous-time transfer function.

The software adds a linearization output at y, followed by a linearization input, dy.
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sys is the transfer function from dy to y, which is equal to –(I+GK)-1GK.

Specify Temporary Loop Opening for Complementary Sensitivity Function Calculation

For the scdcascade model, obtain the complementary sensitivity function for the inner-
loop at y2.

Open the scdcascade model.

mdl = 'scdcascade';

open_system(mdl);

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);
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To calculate the complementary sensitivity transfer function for the inner loop at y2, use
the y2 signal as the analysis point. To eliminate the effects of the outer loop, break the
outer loop at y1m. Add both these points to sllin.

addPoint(sllin,{'y2','y1m'});

Obtain the complementary sensitivity function for the inner loop at y2.

sys = getCompSensitivity(sllin,'y2','y1m');

Here, 'y1m', the third input argument, specifies a temporary opening for the outer loop.

Complementary Sensitivity Function for Specific Parameter Combination

Suppose you batch linearize the scdcascade model for multiple transfer functions. For
most linearizations, you vary the proportional (Kp2) and integral gain (Ki2) of the C2
controller in the 10% range. For this example, calculate the complementary sensitivity
function for the inner loop for the maximum value of Kp2 and Ki2.

Open the scdcascade model.

mdl = 'scdcascade';

open_system(mdl);

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

Vary the proportional (Kp2) and integral gain (Ki2) of the C2 controller in the 10% range.

Kp2_range = linspace(0.9*Kp2,1.1*Kp2,3);

Ki2_range = linspace(0.9*Ki2,1.1*Ki2,5);
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[Kp2_grid,Ki2_grid]=ndgrid(Kp2_range,Ki2_range);

params(1).Name = 'Kp2';

params(1).Value = Kp2_grid;

params(2).Name = 'Ki2';

params(2).Value = Ki2_grid;

sllin.Parameters = params;

To calculate the complementary sensitivity of the inner loop, use the y2 signal as the
analysis point. To eliminate the effects of the outer loop, break the outer loop at y1m. Add
both these points to sllin.

addPoint(sllin,{'y2','y1m'})

Determine the index for the maximum values of Ki2 and Kp2.

mdl_index = params(1).Value==max(Kp2_range) & params(2).Value==max(Ki2_range);

Obtain the complementary sensitivity transfer function at y2.

sys = getCompSensitivity(sllin,'y2','y1m',mdl_index);

• “Vary Parameter Values and Obtain Multiple Transfer Functions Using
slLinearizer”

• “Vary Operating Points and Obtain Multiple Transfer Functions Using
slLinearizer”

• “Use Response Plots to Analyze Batch Linearization Results”

Input Arguments
s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an
slTuner interface.

pt — Analysis point signal name
string | cell array of strings

Analysis point signal name, specified as:
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• String — Analysis point signal name.

To determine the signal name associated with an analysis point, type s. The software
displays the contents of s in the MATLAB command window, including the analysis
point signal names, block names, and port numbers. Suppose an analysis point does
not have a signal name, but only a block name and port number. You can specify pt
as the block name. To use a point not in the list of analysis points for s, first add the
point using addPoint.

You can specify pt as a uniquely matching substring of the full signal name or block
name. Suppose the full signal name of an analysis point is 'LoadTorque'. You can
specify pt as 'Torque' as long as 'Torque' is not a substring of the signal name for
any other analysis point of s.

For example, pt = 'y1m'.
• Cell array of strings — Specifies multiple analysis point names. For example, pt =

{'y1m','y2m'}.

To calculate sys, the software adds a linearization output, followed by a linearization
input at pt.

Consider the following model:

+
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Specify pt as 'y':
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dy
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    y

The software computes sys as the transfer function from dy to y.
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If you specify pt as multiple signals, for example pt = {'u','y'}, the software adds a
linearization output, followed by a linearization input at each point.
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    y

+

    u
du

+

du and dy are linearization inputs, and u and y are linearization outputs. The
software computes sys as a MIMO transfer function with a transfer function from each
linearization input to each linearization output.

temp_opening — Temporary opening signal name
string | cell array of strings

Temporary opening signal name, specified as:

• String — Analysis point signal name.

temp_opening must specify an analysis point that is in the list of analysis points for s.
To determine the signal name associated with an analysis point, type s. The software
displays the contents of s in the MATLAB command window, including the analysis
point signal names, block names, and port numbers. Suppose an analysis point does
not have a signal name, but only a block name and port number. You can specify
temp_opening as the block name. To use a point not in the list of analysis points for s,
first add the point using addPoint.

You can specify temp_opening as a uniquely matching substring of the full
signal name or block name. Suppose the full signal name of an analysis point is
'LoadTorque'. You can specify temp_opening as 'Torque' as long as 'Torque' is
not a substring of the signal name for any other analysis point of s.

For example, temp_opening = 'y1m'.
• Cell array of strings — Specifies multiple analysis point names. For example,

temp_opening = {'y1m','y2m'}.

mdl_index — Index for linearizations of interest
array of logical values | vector of positive integers
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Index for linearizations of interest, specified as:

• Array of logical values — Logical array index of linearizations of interest. Suppose you
vary two parameters, par1 and par2, and want to extract the linearization for the
combination of par1 > 0.5 and par2 <= 5. Use:

params = s.Parameters;

mdl_index = params(1).Value>0.5 & params(2).Value<=5;

The expression params(1).Value>0.5 & params(2).Value<5 uses logical
indexing and returns a logical array. This logical array is the same size as
params(1).Value and params(2).Value. Each entry contains the logical
evaluation of the expression for corresponding entries in params(1).Value and
params(2).Value.

• Vector of positive integers — Linear index of linearizations of interest. Suppose you
vary two parameters, par1 and par2, and want to extract the linearization for the
combination of par1 > 0.5 and par2 <= 5. Use:

params = s.Parameters;

mdl_index = find(params(1).Value>0.5 & params(2).Value<=5);

The expression params(1).Value>0.5 & params(2).Value<5 returns a logical
array. find returns the linear index of every true entry in the logical array

Output Arguments

sys — Complementary sensitivity function
state-space model

Complementary sensitivity function, returned as described below:

• If you did not configure s.Parameters and s.OperatingPoints, the software
calculates sys using the default model parameter values. The software uses the model
initial conditions as the linearization operating point. sys is returned as a state-space
model.

• If you configured s.Parameters only, the software computes a linearization for each
parameter grid point. sys is returned as a state-space model array of the same size as
the parameter grid.
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• If you configured s.OperatingPoints only, the software computes a linearization
for each specified operating point. sys is returned as a state-space model array of the
same size as s.OperatingPoints.

• If you configured s.Parameters and specified s.OperatingPoints as a single
operating point, the software computes a linearization for each parameter grid point.
The software uses the specified operating point as the linearization operating point.
sys is returned as a state-space model array of the same size as the parameter grid.

• If you configured s.Parameters and specified s.OperatingPoints as multiple
operating point objects, the software computes a linearization for each parameter
grid point. The software requires that s.OperatingPoints is the same size as
the parameter grid specified by s.Parameters. The software computes each
linearization using corresponding operating points and parameter grid points. sys is
returned as a state-space model array of the same size as the parameter grid.

• If you configured s.Parameters and specified s.OperatingPoints as multiple
simulation snapshot times, the software simulates and linearizes the model for
each snapshot time and parameter grid point combination. Suppose you specify a
parameter grid of size p and N snapshot times. sys is returned as a state-space model
array of size N-by-p.

More About

Complementary Sensitivity Function

The complementary sensitivity function at a point is the transfer function from an
additive disturbance at the point to a measurement at the same point. In contrast to the
sensitivity function, the disturbance is added after the measurement.

To compute the complementary sensitivity function at an analysis point, x, the
software adds a linearization output at x, followed by a linearization input, dx. The
complementary sensitivity function is the transfer function from dx to x.
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Analysis Point in Simulink
Model

How getCompSensitivity
Interprets the Analysis Point

Complementary Sensitivity
Function

x dx

+

+

x Transfer function from dx to
x

For example, consider the following model where you compute the complementary
sensitivity function at y:

Here, the software adds a linearization output at y, followed by a linearization input, dy.
The complementary sensitivity function at y, T, is the transfer function from dy to y. T is
calculated as follows:

y GK y dy

y GKy GKdy

I GK y GKdy

y I GK GK

T

= - +

Æ = - -

Æ + = -

Æ = - +
-

( )

( )

( )
1

1 2444 34444
dy.

Here I is an identity matrix of the same size as GK. The complementary sensitivity
transfer function at y is equal to -1 times the closed-loop transfer function from r to y.

Generally, the complementary sensitivity function, T, computed from reference signals
to plant outputs, is equal to I–S. Here S is the sensitivity function at the point, and I
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is the identity matrix of commensurate size. However, because getCompSensitivity
adds the linearization output and input at the same point, T, as returned by
getCompSensitivity, is equal to S–I.

The software does not modify the Simulink model when it computes the complementary
sensitivity function.

Analysis Point

Analysis points, used by the slLinearizer and slTuner interfaces, identify locations
within a model that are relevant for linear analysis and control system tuning. You
use analysis points as inputs to the linearization commands, such as getIOTransfer,
getLoopTransfer, getSensitivity, and getCompSensitivity. As inputs to the
linearization commands, analysis points can specify any open- or closed-loop transfer
function in a model. You can also use analysis points to specify design requirements
when tuning control systems using commands such as systune (requires a Robust
Control Toolbox license).

Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an analysis point.

You can add analysis points to an slLinearizer or slTuner interface, s, when you
create the interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

Alternatively, you can use the addPoint command.

To view all the analysis points of s, type s at the command prompt to display the
interface contents. For each analysis point of s, the display includes the block name and
port number and the name of the signal that originates at this point. You can also use
getPoints to programmatically obtain a list of all the analysis points.

For more information about how you can use analysis points, see “Managing Signals in
Control System Analysis and Design”.

Permanent Loop Openings

Permanent openings, used by the slLinearizer and slTuner interfaces, identify
locations within a model where the software breaks the signal flow. The software
enforces these openings for linearization and tuning. Use permanent openings to isolate
a specific model component. Suppose you have a large-scale model capturing aircraft
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dynamics and you want to perform linear analysis on the airframe only. You can use
permanent openings to exclude all other components of the model. Another example is
when you have cascaded loops within your model and you want to analyze a specific loop.

Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an opening.

You can add permanent openings to an slLinearizer or slTuner interface, s, when
you create the interface or by using the addOpening command. To remove a location
from the list of permanent openings, use the removeOpening command.

To view all the openings of s, type s at the command prompt to display the interface
contents. For each permanent opening of s, the display includes the block name and
port number and the name of the signal that originates at this location. You can also use
getOpenings to programmatically obtain a list of all the permanent openings.
• “How the Software Treats Loop Openings”

See Also
addOpening | addPoint | getIOTransfer | getLoopTransfer | getSensitivity
| slLinearizer | slTuner
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getIOTransfer
Transfer function for specified I/O set using slLinearizer or slTuner interface

Syntax

sys = getIOTransfer(s,in,out)

sys = getIOTransfer(s,in,out,temp_opening)

sys = getIOTransfer(s,ios)

sys = getIOTransfer( ___ ,mdl_index)

Description

sys = getIOTransfer(s,in,out) returns the transfer function for the specified
inputs and outputs for the model associated with the slLinearizer or slTuner
interface, s.

The software enforces all the permanent openings specified for s when it calculates sys.
For information on how getIOTransfer treats in and out, see “Transfer Functions”
on page 6-207. If you configured either s.Parameters, or s.OperatingPoints, or
both, getIOTransfer performs multiple linearizations and returns an array of transfer
functions.

sys = getIOTransfer(s,in,out,temp_opening) considers additional, temporary,
openings at the point specified by temp_opening. Use an opening, for example, to obtain
the transfer function of the controller in series with the plant, with the feedback loop
open.

sys = getIOTransfer(s,ios) returns the transfer function for the inputs and
outputs specified by ios for the model associated with s. Use the linio command to
create ios. The software enforces the linearization I/O type of each signal specified in
ios when it calculates sys. The software also enforces all the permanent loop openings
specified for s.

sys = getIOTransfer( ___ ,mdl_index) returns a subset of the batch linearization
results. mdl_index specifies the index of the linearizations of interest, in addition to any
of the input arguments in previous syntaxes.
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Use this syntax for efficient linearization, when you want to obtain the transfer function
for only a subset of the batch linearization results.

Examples

Closed-Loop Transfer Function from Reference to Plant Output

Obtain the closed-loop transfer function from the reference signal, r, to the plant output,
y, for the ex_scd_simple_fdbk model.

Open the ex_scd_simple_fdbk model.

mdl = 'ex_scd_simple_fdbk';

open_system(mdl);

In this model:
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Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

To obtain the closed-loop transfer function from the reference signal, r, to the plant
output, y, add both points to sllin.

addPoint(sllin,{'r','y'});

Obtain the closed-loop transfer function from r to y.

sys = getIOTransfer(sllin,'r','y');

tf(sys)
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ans =

 

  From input "r" to output "y":

    3

  -----

  s + 8

 

Continuous-time transfer function.

The software adds a linearization input at r, dr, and a linearization output at y.
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sys is the transfer function from dr to y, which is equal to (I+GK)-1GK.

Specify Temporary Loop Opening to Get Plant Model

Obtain the plant model transfer function, G, for the ex_scd_simple_fdbk model.

Open the ex_scd_simple_fdbk model.

mdl = 'ex_scd_simple_fdbk';

open_system(mdl);

In this model:
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Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

To obtain the plant model transfer function, use u as the input point and y as the output
point. To eliminate the effects of feedback, you must break the loop. You can break the
loop at u, e, or y. For this example, break the loop at u. Add these points to sllin.

addPoint(sllin,{'u','y'});

Obtain the plant model transfer function.

sys = getIOTransfer(sllin,'u','y','u');

tf(sys)

ans =

 

  From input "u" to output "y":

    1

  -----

  s + 5

 

Continuous-time transfer function.

The second input argument specifies u as the input, while the fourth input argument
specifies u as a temporary loop opening.

+

-
K G

e ur

    y
du

sys is the transfer function from du to y, which is equal to G.

Open-Loop Response Transfer Function for Specific Parameter Combination

Suppose you batch linearize the scdcascade model for multiple transfer functions. For
most linearizations, you vary the proportional (Kp2) and integral gain (Ki2) of the C2
controller in the 10% range. For this example, calculate the open-loop response transfer
function for the inner loop, from e2 to y2, for the maximum value of Kp2 and Ki2.
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Open the scdcascade model.

mdl = 'scdcascade';

open_system(mdl);

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

Vary the proportional (Kp2) and integral gain (Ki2) of the C2 controller in the 10% range.

Kp2_range = linspace(0.9*Kp2,1.1*Kp2,3);

Ki2_range = linspace(0.9*Ki2,1.1*Ki2,5);

[Kp2_grid,Ki2_grid]=ndgrid(Kp2_range,Ki2_range);

params(1).Name = 'Kp2';

params(1).Value = Kp2_grid;

params(2).Name = 'Ki2';

params(2).Value = Ki2_grid;

sllin.Parameters = params;

To calculate the open-loop transfer function for the inner loop, use e2 and y2 as analysis
points. To eliminate the effects of the outer loop, break the loop at e2. Add e2 and y2 to
sllin as analysis points.

addPoint(sllin,{'e2','y2'})



 getIOTransfer

6-203

Determine the index for the maximum values of Ki2 and Kp2.

mdl_index = params(1).Value==max(Kp2_range) & params(2).Value==max(Ki2_range);

Obtain the open-loop transfer function from e2 to y2.

sys = getIOTransfer(sllin,'e2','y2','e2',mdl_index);

• “Vary Parameter Values and Obtain Multiple Transfer Functions Using
slLinearizer”

• “Vary Operating Points and Obtain Multiple Transfer Functions Using
slLinearizer”

• “Use Response Plots to Analyze Batch Linearization Results”

Input Arguments

s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an
slTuner interface.

in — Input analysis point signal name
string | cell array of strings

Input analysis point signal name, specified as:

• String — Analysis point signal name.

To determine the signal name associated with an analysis point, type s. The software
displays the contents of s in the MATLAB command window, including the analysis
point signal names, block names, and port numbers. Suppose an analysis point does
not have a signal name, but only a block name and port number. You can specify in
as the block name. To use a point not in the list of analysis points for s, first add the
point using addPoint.

You can specify in as a uniquely matching substring of the full signal name or block
name. Suppose the full signal name of an analysis point is 'LoadTorque'. You can
specify in as 'Torque' as long as 'Torque' is not a substring of the signal name for
any other analysis point of s.
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For example, in = 'y1m'.
• Cell array of strings — Specifies multiple analysis point names. For example, in =

{'y1m','y2m'}.

out — Output analysis point signal name
string | cell array of strings

Output analysis point signal name, specified as:

• String — Analysis point signal name.

To determine the signal name associated with an analysis point, type s. The software
displays the contents of s in the MATLAB command window, including the analysis
point signal names, block names, and port numbers. Suppose an analysis point does
not have a signal name, but only a block name and port number. You can specify out
as the block name. To use a point not in the list of analysis points for s, first add the
point using addPoint.

You can specify out as a uniquely matching substring of the full signal name or block
name. Suppose the full signal name of an analysis point is 'LoadTorque'. You can
specify out as 'Torque' as long as 'Torque' is not a substring of the signal name
for any other analysis point of s.

For example, out = 'y1m'.
• Cell array of strings — Specifies multiple analysis point names. For example, out =

{'y1m','y2m'}.

temp_opening — Temporary opening signal name
string | cell array of strings

Temporary opening signal name, specified as:

• String — Analysis point signal name.

temp_opening must specify an analysis point that is in the list of analysis points for s.
To determine the signal name associated with an analysis point, type s. The software
displays the contents of s in the MATLAB command window, including the analysis
point signal names, block names, and port numbers. Suppose an analysis point does
not have a signal name, but only a block name and port number. You can specify
temp_opening as the block name. To use a point not in the list of analysis points for s,
first add the point using addPoint.
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You can specify temp_opening as a uniquely matching substring of the full
signal name or block name. Suppose the full signal name of an analysis point is
'LoadTorque'. You can specify temp_opening as 'Torque' as long as 'Torque' is
not a substring of the signal name for any other analysis point of s.

For example, temp_opening = 'y1m'.
• Cell array of strings — Specifies multiple analysis point names. For example,

temp_opening = {'y1m','y2m'}.

ios — Linearization I/Os
linearization I/O object

Linearization I/Os, created using linio, specified as a linearization I/O object.

ios must specify signals that are in the list of analysis points for s. To view the list of
analysis points, type s. To use a point that is not in the list of analysis points for s, you
must first add the point to the list using addPoint.

For example:

ios(1) = linio('scdcascade/setpoint',1,'input');

ios(2) = linio('scdcascade/Sum',1,'output');

Here, ios(1) specifies an input, and ios(2) specifies an output.

mdl_index — Index for linearizations of interest
array of logical values | vector of positive integers

Index for linearizations of interest, specified as:

• Array of logical values — Logical array index of linearizations of interest. Suppose you
vary two parameters, par1 and par2, and want to extract the linearization for the
combination of par1 > 0.5 and par2 <= 5. Use:

params = s.Parameters;

mdl_index = params(1).Value>0.5 & params(2).Value<=5;

The expression params(1).Value>0.5 & params(2).Value<5 uses logical
indexing and returns a logical array. This logical array is the same size as
params(1).Value and params(2).Value. Each entry contains the logical
evaluation of the expression for corresponding entries in params(1).Value and
params(2).Value.
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• Vector of positive integers — Linear index of linearizations of interest. Suppose you
vary two parameters, par1 and par2, and want to extract the linearization for the
combination of par1 > 0.5 and par2 <= 5. Use:

params = s.Parameters;

mdl_index = find(params(1).Value>0.5 & params(2).Value<=5);

The expression params(1).Value>0.5 & params(2).Value<5 returns a logical
array. find returns the linear index of every true entry in the logical array

Output Arguments
sys — Transfer function for specified I/Os
state-space model

Transfer function for specified I/Os, returned as described below:

• If you did not configure s.Parameters and s.OperatingPoints, the software
calculates sys using the default model parameter values. The software uses the model
initial conditions as the linearization operating point. sys is returned as a state-space
model.

• If you configured s.Parameters only, the software computes a linearization for each
parameter grid point. sys is returned as a state-space model array of the same size as
the parameter grid.

• If you configured s.OperatingPoints only, the software computes a linearization
for each specified operating point. sys is returned as a state-space model array of the
same size as s.OperatingPoints.

• If you configured s.Parameters and specified s.OperatingPoints as a single
operating point, the software computes a linearization for each parameter grid point.
The software uses the specified operating point as the linearization operating point.
sys is returned as a state-space model array of the same size as the parameter grid.

• If you configured s.Parameters and specified s.OperatingPoints as multiple
operating point objects, the software computes a linearization for each parameter
grid point. The software requires that s.OperatingPoints is the same size as
the parameter grid specified by s.Parameters. The software computes each
linearization using corresponding operating points and parameter grid points. sys is
returned as a state-space model array of the same size as the parameter grid.

• If you configured s.Parameters and specified s.OperatingPoints as multiple
simulation snapshot times, the software simulates and linearizes the model for
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each snapshot time and parameter grid point combination. Suppose you specify a
parameter grid of size p and N snapshot times. sys is returned as a state-space model
array of size N-by-p.

More About

Transfer Functions

A transfer function is an LTI system’s response at a linearization output point to a
linearization input. You perform linear analysis on transfer functions to understand the
stability, time-domain or frequency-domain characteristics of a system.

You can calculate multiple transfer functions for a given block diagram. Consider the
ex_scd_simple_fdbk model:

You can calculate the transfer function from the reference input signal to the plant
output signal. The reference input (also referred to as setpoint) , r, originates at the
Reference block, and the plant output, y, originates at the G block. This transfer function
is also called the overall closed-loop transfer function. To calculate this transfer function,
the software adds a linearization input at r, dr, and a linearization output at y.

+

-
K G

e u

    y

+

dr

+
r
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The software calculates the overall closed-loop transfer function as the transfer function
from dr to y, which is equal to (I+GK)-1GK.

Observe that the transfer function from r to y is equal to the transfer function from dr to
y.

You can calculate the plant transfer function from the plant input, u, to the plant output,
y. To isolate the plant dynamics from the effects of the feedback loop, introduce a loop
break (or opening) at y, e, or, as shown, at u.

+

-
K G

e ur

    y
du

The software breaks the loop and adds a linearization input, du, at u, and a linearization
output at y. The plant transfer function is equal to the transfer function from du to y,
which is G.

Similarly, to obtain the controller transfer function, calculate the transfer function from
the controller input, e, to the controller output, u. Break the feedback loop at y, e, or u.

You can use getIOTransfer to obtain a variety of open-loop and closed-loop transfer
functions. To configure the transfer function, specify analysis points as inputs, outputs,
and openings (temporary or permanent), in any combination. The software treats each
combination uniquely. Consider the following code that shows some different ways that
you can use the analysis point, u, to obtain a transfer function:

sllin = slLinearizer('ex_scd_simple_fdbk')

addPoint(sllin,{'u','e','y'})

T0 = getIOTransfer(sllin,'e','y','u');

T1 = getIOTransfer(sllin,'u','y');

T2 = getIOTransfer(sllin,'u','y','u');

T3 = getIOTransfer(sllin,'y','u');

T4 = getIOTransfer(sllin,'y','u','u');
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T5 = getIOTransfer(sllin,'u','u'); 

T6 = getIOTransfer(sllin,'u','u','u');

In T0, u specifies a loop break. In T1, u specifies only an input, whereas in T2, u specifies
an input and an opening, also referred to as an open-loop input. In T3, u specifies only
an output, whereas in T4, u specifies an output and an opening, also referred to as
an open-loop output. In T5, u specifies an input and an output, also referred to as a
complementary sensitivity point. In T6, u specifies an input, an output, and an opening,
also referred to as a loop transfer point. The table describes how getIOTransfer treats
the analysis points, with an emphasis on the different uses of u.

u Specifies... How getIOTransfer Treats the
Analysis Points

Transfer Function

Loop break

Example code:
T0 =

getIOTransfer(sllin,'e','y','u')+

-
K G

ur

de

+

    y

The software stops the
signal flow at u, adds a
linearization input, de, at e,
and a linearization output
at y.

y G

y
T

=

Æ =

0

0

0

{

Input

Example code:
T1 =

getIOTransfer(sllin,'u','y')+

-
K G

er

+

du

+

    y

The software adds a
linearization input, du, at u,
and a linearization output
at y.

y G du Ky

y Gdu GKy

I GK y Gdu

y I GK G du

T

= -

Æ = -

Æ + =

Æ = +
-

( )

( )

( )
1

1

1 244 344
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u Specifies... How getIOTransfer Treats the
Analysis Points

Transfer Function

Open-loop input

Example code:
T2 =

getIOTransfer(sllin,'u','y','u')+

-
K G

e ur

    y
du

The software breaks the
signal flow and adds a
linearization input, du, at u,
and a linearization output
at y.

y G du

y G du
T

= +

Æ =

( )0

2

{

Output

Example code:
T3 =

getIOTransfer(sllin,'y','u')+

-
K G

er

    u

+

dy

+

The software adds a
linearization input, dy, at y
and a linearization output
at u.

u K dy Gu

u Kdy KGu

I KG u Kdy

u I KG K d

T

= - +

Æ = - -

Æ + = -

Æ = - +
-

( )

( )

( )
1

3

1 244 344
yy
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u Specifies... How getIOTransfer Treats the
Analysis Points

Transfer Function

Open-loop output

Example code:
T4 =

getIOTransfer(sllin,'y','u','u')+

-
K G

er

    u
+

dy

+

The software adds a
linearization input, dy, at
y and adds a linearization
output and breaks the
signal flow at u.

u K dy G

u K dy
T

= - +

Æ = -

( )0

4

{

Complementary
sensitivity point

Example code:
T5 =

getIOTransfer(sllin,'u','u')

Tip You also can obtain
the complementary
sensitivity function using
getCompSensitivity.

+

-
K G

e yr

du

+

+

u

The software adds a
linearization output and a
linearization input, du, at u.

u KG du u

u KGdu KGu

I KG u KGdu

u I KG KG

T

= - +

Æ = - -

Æ + = -

Æ = - +
-

( )

( )

( )
1

5

1 2444 33444
du
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u Specifies... How getIOTransfer Treats the
Analysis Points

Transfer Function

Loop transfer function
point

Example code:
T6 =

getIOTransfer(sllin,'u','u','u')

Tip You also can obtain the
loop transfer function using
getLoopTransfer.

+

-
K G

e yr

u

du

The software adds a
linearization output,
breaks the loop, and adds a
linearization input, du, at u.

u KG du

u KG du

T

= - +

Æ = -

( )0

6

{

The software does not modify the Simulink model when it computes the transfer
function.

Analysis Points

Analysis points, used by the slLinearizer and slTuner interfaces, identify locations
within a model that are relevant for linear analysis and control system tuning. You
use analysis points as inputs to the linearization commands, such as getIOTransfer,
getLoopTransfer, getSensitivity, and getCompSensitivity. As inputs to the
linearization commands, analysis points can specify any open- or closed-loop transfer
function in a model. You can also use analysis points to specify design requirements
when tuning control systems using commands such as systune (requires a Robust
Control Toolbox license).

Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an analysis point.

You can add analysis points to an slLinearizer or slTuner interface, s, when you
create the interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

Alternatively, you can use the addPoint command.

To view all the analysis points of s, type s at the command prompt to display the
interface contents. For each analysis point of s, the display includes the block name and
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port number and the name of the signal that originates at this point. You can also use
getPoints to programmatically obtain a list of all the analysis points.

For more information about how you can use analysis points, see “Managing Signals in
Control System Analysis and Design”.

Permanent Openings

Permanent openings, used by the slLinearizer and slTuner interfaces, identify
locations within a model where the software breaks the signal flow. The software
enforces these openings for linearization and tuning. Use permanent openings to isolate
a specific model component. Suppose you have a large-scale model capturing aircraft
dynamics and you want to perform linear analysis on the airframe only. You can use
permanent openings to exclude all other components of the model. Another example is
when you have cascaded loops within your model and you want to analyze a specific loop.

Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an opening.

You can add permanent openings to an slLinearizer or slTuner interface, s, when
you create the interface or by using the addOpening command. To remove a location
from the list of permanent openings, use the removeOpening command.

To view all the openings of s, type s at the command prompt to display the interface
contents. For each permanent opening of s, the display includes the block name and
port number and the name of the signal that originates at this location. You can also use
getOpenings to programmatically obtain a list of all the permanent openings.
• “How the Software Treats Loop Openings”

See Also
addOpening | addPoint | getCompSensitivity | getLoopTransfer |
getSensitivity | slLinearizer | slTuner
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getLoopTransfer
Open-loop transfer function at specified point using slLinearizer or slTuner interface

Syntax

sys = getLoopTransfer(s,pt)

sys = getLoopTransfer(s,pt,sign)

sys = getLoopTransfer(s,pt,temp_opening)

sys = getLoopTransfer(s,pt,temp_opening,sign)

sys = getLoopTransfer( ___ ,mdl_index)

Description

sys = getLoopTransfer(s,pt) returns the point-to-point open-loop transfer function
at the specified analysis point for the model associated with the slLinearizer or
slTuner interface, s.

The software enforces all the permanent loop openings specified for s when it calculates
sys. If you configured either s.Parameters, or s.OperatingPoints, or both,
getLoopTransfer performs multiple linearizations and returns an array of loop
transfer functions.

sys = getLoopTransfer(s,pt,sign) specifies the feedback sign for computing the
open-loop response. By default, sys is the positive-feedback open-loop transfer function.

Set sign to -1 to compute the negative-feedback open-loop transfer function for
applications that assume the negative-feedback definition of sys. Many classical design
and analysis techniques, such as the Nyquist or root locus design techniques, use the
negative-feedback convention.

The closed-loop sensitivity at pt is equal to feedback(1,sys,sign).

sys = getLoopTransfer(s,pt,temp_opening) considers additional, temporary,
openings at the point specified by temp_opening. Use an opening, for example, to
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calculate the loop transfer function of an inner loop, measured at the plant input, with
the outer loop open.

sys = getLoopTransfer(s,pt,temp_opening,sign) specifies temporary openings
and the feedback sign.

sys = getLoopTransfer( ___ ,mdl_index) returns a subset of the batch
linearization results. mdl_index specifies the index of the linearizations of interest, in
addition to any of the input arguments in previous syntaxes.

Use this syntax for efficient linearization, when you want to obtain the loop transfer
function for only a subset of the batch linearization results.

Examples

Loop Transfer Function at Analysis Point

Obtain the loop transfer function, calculated at e, for the ex_scd_simple_fdbk model.

Open the ex_scd_simple_fdbk model.

mdl = 'ex_scd_simple_fdbk';

open_system(mdl);

In this model:

K s K

G s
s

p( )

( ) .

= =

=

+

3

1

5
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Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

To obtain the loop transfer function at e, add this point to sllin as an analysis point.

addPoint(sllin,'e');

Obtain the loop transfer function at e.

sys = getLoopTransfer(sllin,'e');

tf(sys)

  From input "e" to output:

   -3

  -----

  s + 5

 

Continuous-time transfer function.

The software adds a linearization output, breaks the loop, and adds a linearization input,
de, at e.

+

-
K G

yr

e

de

u

sys is the transfer function from de to e. Because the software assumes positive-
feedback, it returns sys as –GK.

Negative-Feedback Loop Transfer Function at Analysis Point

Obtain the negative-feedback loop transfer function, calculated at e, for the
ex_scd_simple_fdbk model.

Open the ex_scd_simple_fdbk model.
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mdl = 'ex_scd_simple_fdbk';

open_system(mdl);

In this model:

K s K

G s
s

p( )

( ) .

= =

=

+

3

1

5

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

To obtain the loop transfer function at e, add this point to sllin as an analysis point.

addPoint(sllin,'e');

Obtain the loop transfer function at e.

sys = getLoopTransfer(sllin,'e',-1);

tf(sys)

ans =

 

  From input "e" to output:

    3

  -----

  s + 5

 

Continuous-time transfer function.

The software adds a linearization output, breaks the loop, and adds a linearization input,
de, at e.
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+

-
K G

yr

e

de

u

sys is the transfer function from de to e. Because the third input argument indicates
negative-feedback, the software returns sys as GK.

Specify Temporary Loop Opening for Loop Transfer Function Calculation

Obtain the loop transfer function for the inner loop, calculated at e2, for the scdcascade
model.

Open the scdcascade model.

mdl = 'scdcascade';

open_system(mdl);

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

To calculate the loop transfer function for the inner loop, use the e2 signal as the
analysis point. To eliminate the effects of the outer loop, break the outer loop at y1m. Add
these points to sllin.
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addPoint(sllin,{'e2','y1m'});

Obtain the inner-loop loop transfer function at e2.

sys = getLoopTransfer(sllin,'e2','y1m');

Here, 'y1m', the third input argument, specifies a temporary loop opening. The software
assumes positive-feedback when it calculates sys.

Loop Transfer Function for Specific Parameter Combination

Suppose you batch linearize the scdcascade model for multiple transfer functions. For
most linearizations, you vary the proportional (Kp2) and integral gain (Ki2) of the C2
controller, in the 10% range. For this example, calculate the loop transfer function for the
inner loop at e2 for the maximum values of Kp2 and Ki2.

Open the scdcascade model.

mdl = 'scdcascade';

open_system(mdl);

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

Vary the proportional (Kp2) and integral gain (Ki2) of the C2 controller in the 10% range.

Kp2_range = linspace(0.9*Kp2,1.1*Kp2,3);

Ki2_range = linspace(0.9*Ki2,1.1*Ki2,5);

[Kp2_grid,Ki2_grid]=ndgrid(Kp2_range,Ki2_range);
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params(1).Name = 'Kp2';

params(1).Value = Kp2_grid;

params(2).Name = 'Ki2';

params(2).Value = Ki2_grid;

sllin.Parameters = params;

To calculate the loop transfer function for the inner loop, use the e2 signal as the
analysis point. To eliminate the effects of the outer loop, break the outer loop at y1m. Add
these points to sllin.

addPoint(sllin,{'e2','y1m'});

Determine the index for the maximum values of Ki2 and Kp2.

mdl_index = params(1).Value==max(Kp2_range) & params(2).Value==max(Ki2_range);

Obtain the inner-loop loop transfer function at e2, with the outer loop open.

sys = getLoopTransfer(sllin,'e2','y1m',-1,mdl_index);

The fourth input argument specifies negative-feedback for the loop transfer calculation.

• “Vary Parameter Values and Obtain Multiple Transfer Functions Using
slLinearizer”

• “Vary Operating Points and Obtain Multiple Transfer Functions Using
slLinearizer”

• “Use Response Plots to Analyze Batch Linearization Results”

Input Arguments

s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an
slTuner interface.

pt — Analysis point signal name
string | cell array of strings

Analysis point signal name, specified as:
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• String — Analysis point signal name.

To determine the signal name associated with an analysis point, type s. The software
displays the contents of s in the MATLAB command window, including the analysis
point signal names, block names, and port numbers. Suppose an analysis point does
not have a signal name, but only a block name and port number. You can specify pt
as the block name. To use a point not in the list of analysis points for s, first add the
point using addPoint.

You can specify pt as a uniquely matching substring of the full signal name or block
name. Suppose the full signal name of an analysis point is 'LoadTorque'. You can
specify pt as 'Torque' as long as 'Torque' is not a substring of the signal name for
any other analysis point of s.

For example, pt = 'y1m'.
• Cell array of strings — Specifies multiple analysis point names. For example, pt =

{'y1m','y2m'}.

To calculate sys, the software adds a linearization output, followed by a loop break, and
then a linearization input at pt. Consider the following model:

+

-
K G

e u yr

Specify pt as 'u'.

+

-
K G

e yr

u

du

The software computes sys as the transfer function from du to u.

If you specify pt as multiple signals, for example pt = {'u','y'}, the software adds a
linearization output, loop break, and a linearization input at each point.
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+

-
K G

er

u
du

y

dy

du and dy are linearization inputs, and, u and y are linearization outputs. The
software computes sys as a MIMO transfer function with a transfer function from each
linearization input to each linearization output.

sign — Feedback sign
+1 (default) | -1

Feedback sign, specified as one of the following values:

• +1 (default) — getLoopTransfer returns the positive-feedback open-loop transfer
function.

• -1 — getLoopTransfer returns the negative-feedback open-loop transfer function.
The negative-feedback transfer function is -1 times the positive-feedback transfer
function.

temp_opening — Temporary opening signal name
string | cell array of strings

Temporary opening signal name, specified as:

• String — Analysis point signal name.

temp_opening must specify an analysis point that is in the list of analysis points for s.
To determine the signal name associated with an analysis point, type s. The software
displays the contents of s in the MATLAB command window, including the analysis
point signal names, block names, and port numbers. Suppose an analysis point does
not have a signal name, but only a block name and port number. You can specify
temp_opening as the block name. To use a point not in the list of analysis points for s,
first add the point using addPoint.

You can specify temp_opening as a uniquely matching substring of the full
signal name or block name. Suppose the full signal name of an analysis point is
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'LoadTorque'. You can specify temp_opening as 'Torque' as long as 'Torque' is
not a substring of the signal name for any other analysis point of s.

For example, temp_opening = 'y1m'.
• Cell array of strings — Specifies multiple analysis point names. For example,

temp_opening = {'y1m','y2m'}.

mdl_index — Index for linearizations of interest
array of logical values | vector of positive integers

Index for linearizations of interest, specified as:

• Array of logical values — Logical array index of linearizations of interest. Suppose you
vary two parameters, par1 and par2, and want to extract the linearization for the
combination of par1 > 0.5 and par2 <= 5. Use:

params = s.Parameters;

mdl_index = params(1).Value>0.5 & params(2).Value<=5;

The expression params(1).Value>0.5 & params(2).Value<5 uses logical
indexing and returns a logical array. This logical array is the same size as
params(1).Value and params(2).Value. Each entry contains the logical
evaluation of the expression for corresponding entries in params(1).Value and
params(2).Value.

• Vector of positive integers — Linear index of linearizations of interest. Suppose you
vary two parameters, par1 and par2, and want to extract the linearization for the
combination of par1 > 0.5 and par2 <= 5. Use:

params = s.Parameters;

mdl_index = find(params(1).Value>0.5 & params(2).Value<=5);

The expression params(1).Value>0.5 & params(2).Value<5 returns a logical
array. find returns the linear index of every true entry in the logical array

Output Arguments

sys — Point-to-point open-loop transfer function
state-space object

Point-to-point open-loop transfer function, returned as described below:
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• If you did not configure s.Parameters and s.OperatingPoints, the software
calculates sys using the default model parameter values. The software uses the model
initial conditions as the linearization operating point. sys is returned as a state-space
model.

• If you configured s.Parameters only, the software computes a linearization for each
parameter grid point. sys is returned as a state-space model array of the same size as
the parameter grid.

• If you configured s.OperatingPoints only, the software computes a linearization
for each specified operating point. sys is returned as a state-space model array of the
same size as s.OperatingPoints.

• If you configured s.Parameters and specified s.OperatingPoints as a single
operating point, the software computes a linearization for each parameter grid point.
The software uses the specified operating point as the linearization operating point.
sys is returned as a state-space model array of the same size as the parameter grid.

• If you configured s.Parameters and specified s.OperatingPoints as multiple
operating point objects, the software computes a linearization for each parameter
grid point. The software requires that s.OperatingPoints is the same size as
the parameter grid specified by s.Parameters. The software computes each
linearization using corresponding operating points and parameter grid points. sys is
returned as a state-space model array of the same size as the parameter grid.

• If you configured s.Parameters and specified s.OperatingPoints as multiple
simulation snapshot times, the software simulates and linearizes the model for
each snapshot time and parameter grid point combination. Suppose you specify a
parameter grid of size p and N snapshot times. sys is returned as a state-space model
array of size N-by-p.

More About

Loop Transfer Function

The loop transfer function at a point is the point-to-point open-loop transfer function from
an additive disturbance at a point to a measurement at the same point.

To compute the loop transfer function at an analysis point, x, the software adds a
linearization output, inserts a loop break, and adds a linearization input, dx. The
software computes the transfer function from dx to x, which is equal to the loop transfer
function at x.
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Analysis Point in Simulink
Model

How getLoopTransfer
Interprets the Analysis Point

Loop Transfer Function

x
dx

x Transfer function from dx to
x

For example, consider the following model where you compute the loop transfer function
at e:

K yr
+

-

e G
u

Loop transfer

Controller Plant

Here, at e, the software adds a linearization output, inserts a loop break, and adds a
linearization input, de. The loop transfer function at e, L, is the transfer function from
de to e. L is calculated as follows:

e GK de

L

= -
{

.

To compute -KG, use u as the analysis point for getLoopTransfer.

The software does not modify the Simulink model when it computes the loop transfer
function.

Analysis Points

Analysis points, used by the slLinearizer and slTuner interfaces, identify locations
within a model that are relevant for linear analysis and control system tuning. You
use analysis points as inputs to the linearization commands, such as getIOTransfer,
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getLoopTransfer, getSensitivity, and getCompSensitivity. As inputs to the
linearization commands, analysis points can specify any open- or closed-loop transfer
function in a model. You can also use analysis points to specify design requirements
when tuning control systems using commands such as systune (requires a Robust
Control Toolbox license).

Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an analysis point.

You can add analysis points to an slLinearizer or slTuner interface, s, when you
create the interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

Alternatively, you can use the addPoint command.

To view all the analysis points of s, type s at the command prompt to display the
interface contents. For each analysis point of s, the display includes the block name and
port number and the name of the signal that originates at this point. You can also use
getPoints to programmatically obtain a list of all the analysis points.

For more information about how you can use analysis points, see “Managing Signals in
Control System Analysis and Design”.

Permanent Openings

Permanent openings, used by the slLinearizer and slTuner interfaces, identify
locations within a model where the software breaks the signal flow. The software
enforces these openings for linearization and tuning. Use permanent openings to isolate
a specific model component. Suppose you have a large-scale model capturing aircraft
dynamics and you want to perform linear analysis on the airframe only. You can use
permanent openings to exclude all other components of the model. Another example is
when you have cascaded loops within your model and you want to analyze a specific loop.

Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an opening.

You can add permanent openings to an slLinearizer or slTuner interface, s, when
you create the interface or by using the addOpening command. To remove a location
from the list of permanent openings, use the removeOpening command.

To view all the openings of s, type s at the command prompt to display the interface
contents. For each permanent opening of s, the display includes the block name and
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port number and the name of the signal that originates at this location. You can also use
getOpenings to programmatically obtain a list of all the permanent openings.
• “How the Software Treats Loop Openings”

See Also
addOpening | addPoint | getCompSensitivity | getIOTransfer |
getSensitivity | slLinearizer | slTuner
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getOpenings
Get list of openings for slLinearizer or slTuner interface

Syntax

op_names = getOpenings(s)

Description

op_names = getOpenings(s) returns the names of the permanent openings of s,
which can be either an slLinearizer interface or an slTuner interface.

Examples

Obtain Permanent Opening Names of slLinearizer Interface

Create an slLinearizer interface to the scdcascade model, and add some analysis
points to the interface.

sllin = slLinearizer('scdcascade',{'u1','y1'});
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Suppose you are interested in analyzing only the inner loop. So, add y1m as a permanent
opening of sllin.

addOpening(sllin,'y1m');

In larger models, you may want to open multiple loops to isolate the system of interest.

After performing some additional steps, such as adding more points of interest and
extracting transfer functions, suppose you want a list of all the openings of sllin.

op_names = getOpenings(sllin)

op_names = 

    'scdcascade/Sum/1[y1m]'

Input Arguments

s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an
slTuner interface.

Output Arguments

op_names — Permanent opening names
cell array of strings

Permanent opening names, returned as a cell array of strings.

Each entry of op_names follows the pattern, full block path/outport number/
[signal name].

See Also
addOpening | getIOTransfer | removeOpening | slLinearizer | slTuner
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getPoints
Get list of analysis points for slLinearizer or slTuner interface

Syntax

pt_names = getPoints(s)

Description

pt_names = getPoints(s) returns the names of the analysis points of s, which can
be either an slLinearizer interface or an slTuner interface. Use the analysis point
names to extract transfer functions using commands such as getIOTransfer and to
specify tuning goals for an slTuner interface.

Examples

Obtain Analysis Point Names of slLinearizer Interface

Create an slLinearizer interface to the ex_scd_simple_fdbk model, and add some
analysis points to the interface.

sllin = slLinearizer('ex_scd_simple_fdbk',{'r','e','u','y'});

Get the names of all the analysis points associated with sllin.

pt_names = getPoints(sllin)
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pt_names = 

    'ex_scd_simple_fdbk/Reference/1[r]'

    'ex_scd_simple_fdbk/Sum/1[e]'

    'ex_scd_simple_fdbk/K (controller)/1[u]'

    'ex_scd_simple_fdbk/G (plant)/1[y]'

• “Managing Signals in Control System Analysis and Design”

Input Arguments

s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an
slTuner interface.

Output Arguments

pt_names — Analysis point names
cell array of strings

Analysis point names, returned as a cell array of strings.

Each entry of pt_names follows the pattern, full block path/outport number/
[signal name].

See Also
addPoint | getIOTransfer | removePoint | slLinearizer | slTuner



6 Alphabetical List

6-232

getSensitivity
Sensitivity function at specified point using slLinearizer or slTuner interface

Syntax

sys = getSensitivity(s,pt)

sys = getSensitivity(s,pt,temp_opening)

sys = getSensitivity( ___ ,mdl_index)

Description

sys = getSensitivity(s,pt) returns the sensitivity function at the specified
analysis point for the model associated with the slLinearizer or slTuner interface, s.

The software enforces all the permanent openings specified for s when it calculates
sys. If you configured either s.Parameters, or s.OperatingPoints, or both,
getSensitivity performs multiple linearizations and returns an array of sensitivity
functions.

sys = getSensitivity(s,pt,temp_opening) considers additional, temporary,
openings at the point specified by temp_opening. Use an opening, for example, to
calculate the sensitivity function of an inner loop, with the outer loop open.

sys = getSensitivity( ___ ,mdl_index) returns a subset of the batch linearization
results. mdl_index specifies the index of the linearizations of interest, in addition to any
of the input arguments in previous syntaxes.

Use this syntax for efficient linearization, when you want to obtain the sensitivity
function for only a subset of the batch linearization results.

Examples

Sensitivity Function at Analysis Point

For the ex_scd_simple_fdbk model, obtain the sensitivity at the plant input, u.
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Open the ex_scd_simple_fdbk model.

mdl = 'ex_scd_simple_fdbk';

open_system(mdl);

In this model:

K s K

G s
s

p( )

( ) .

= =

=

+

3

1

5

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

To obtain the sensitivity at the plant input, u, add u as an analysis point to sllin.

addPoint(sllin,'u');

Obtain the sensitivity at the plant input, u.

sys = getSensitivity(sllin,'u');

tf(sys)

  From input "u" to output "u":

  s + 5

  -----

  s + 8

 

Continuous-time transfer function.

The software uses a linearization input, du, and linearization output u to compute sys.
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sys is the transfer function from du to u, which is equal to (I+KG)-1.

Specify Temporary Loop Opening for Sensitivity Function Calculation

For the scdcascade model, obtain the inner-loop sensitivity at the output of G2, with
the outer loop open.

Open the scdcascade model.

mdl = 'scdcascade';

open_system(mdl);

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

To calculate the sensitivity at the output of G2, use the y2 signal as the analysis point. To
eliminate the effects of the outer loop, break the outer loop at y1m. Add both these points
to sllin.

addPoint(sllin,{'y2','y1m'});



 getSensitivity

6-235

Obtain the sensitivity at y2 with the outer loop open.

sys = getSensitivity(sllin,'y2','y1m');

Here, 'y1m', the third input argument, specifies a temporary opening of the outer loop.

Sensitivity Function for Specific Parameter Combination

Suppose you batch linearize the scdcascade model for multiple transfer functions. For
most linearizations, you vary the proportional (Kp2) and integral gain (Ki2) of the C2
controller in the 10% range. For this example, obtain the sensitivity at the output of G2,
with the outer loop open, for the maximum values of Kp2 and Ki2.

Open the scdcascade model.

mdl = 'scdcascade';

open_system(mdl);

Create an slLinearizer interface for the model.

sllin = slLinearizer(mdl);

Vary the proportional (Kp2) and integral gain (Ki2) of the C2 controller in the 10% range.

Kp2_range = linspace(0.9*Kp2,1.1*Kp2,3);

Ki2_range = linspace(0.9*Ki2,1.1*Ki2,5);

[Kp2_grid,Ki2_grid]=ndgrid(Kp2_range,Ki2_range);

params(1).Name = 'Kp2';

params(1).Value = Kp2_grid;
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params(2).Name = 'Ki2';

params(2).Value = Ki2_grid;

sllin.Parameters = params;

To calculate the sensitivity at the output of G2, use the y2 signal as the analysis point. To
eliminate the effects of the outer loop, break the outer loop at y1m. Add both these points
to sllin as analysis points.

addPoint(sllin,{'y2','y1m'});

Determine the index for the maximum values of Ki2 and Kp2.

mdl_index = params(1).Value==max(Kp2_range) & params(2).Value==max(Ki2_range);

Obtain the sensitivity at the output of G2 for the specified parameter combination.

sys = getSensitivity(sllin,'y2','y1m',mdl_index);

• “Vary Parameter Values and Obtain Multiple Transfer Functions Using
slLinearizer”

• “Vary Operating Points and Obtain Multiple Transfer Functions Using
slLinearizer”

• “Use Response Plots to Analyze Batch Linearization Results”

Input Arguments
s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an
slTuner interface.

pt — Analysis point signal name
string | cell array of strings

Analysis point signal name, specified as:

• String — Analysis point signal name.

To determine the signal name associated with an analysis point, type s. The software
displays the contents of s in the MATLAB command window, including the analysis
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point signal names, block names, and port numbers. Suppose an analysis point does
not have a signal name, but only a block name and port number. You can specify pt
as the block name. To use a point not in the list of analysis points for s, first add the
point using addPoint.

You can specify pt as a uniquely matching substring of the full signal name or block
name. Suppose the full signal name of an analysis point is 'LoadTorque'. You can
specify pt as 'Torque' as long as 'Torque' is not a substring of the signal name for
any other analysis point of s.

For example, pt = 'y1m'.
• Cell array of strings — Specifies multiple analysis point names. For example, pt =

{'y1m','y2m'}.

To calculate sys, the software adds a linearization input, followed by a linearization
output at pt.

Consider the following model:

+

-
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e u yr

Specify pt as 'u':

+

-
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du
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u

The software computes sys as the transfer function from du to u.

If you specify pt as multiple signals, for example pt = {'u','y'}, the software adds a
linearization input, followed by a linearization output at each point.
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du and dy are linearization inputs, and, u and y are linearization outputs. The
software computes sys as a MIMO transfer function with a transfer function from each
linearization input to each linearization output.

temp_opening — Temporary opening signal name
string | cell array of strings

Temporary opening signal name, specified as:

• String — Analysis point signal name.

temp_opening must specify an analysis point that is in the list of analysis points for s.
To determine the signal name associated with an analysis point, type s. The software
displays the contents of s in the MATLAB command window, including the analysis
point signal names, block names, and port numbers. Suppose an analysis point does
not have a signal name, but only a block name and port number. You can specify
temp_opening as the block name. To use a point not in the list of analysis points for s,
first add the point using addPoint.

You can specify temp_opening as a uniquely matching substring of the full
signal name or block name. Suppose the full signal name of an analysis point is
'LoadTorque'. You can specify temp_opening as 'Torque' as long as 'Torque' is
not a substring of the signal name for any other analysis point of s.

For example, temp_opening = 'y1m'.
• Cell array of strings — Specifies multiple analysis point names. For example,

temp_opening = {'y1m','y2m'}.

mdl_index — Index for linearizations of interest
array of logical values | vector of positive integers

Index for linearizations of interest, specified as:



 getSensitivity

6-239

• Array of logical values — Logical array index of linearizations of interest. Suppose you
vary two parameters, par1 and par2, and want to extract the linearization for the
combination of par1 > 0.5 and par2 <= 5. Use:

params = s.Parameters;

mdl_index = params(1).Value>0.5 & params(2).Value<=5;

The expression params(1).Value>0.5 & params(2).Value<5 uses logical
indexing and returns a logical array. This logical array is the same size as
params(1).Value and params(2).Value. Each entry contains the logical
evaluation of the expression for corresponding entries in params(1).Value and
params(2).Value.

• Vector of positive integers — Linear index of linearizations of interest. Suppose you
vary two parameters, par1 and par2, and want to extract the linearization for the
combination of par1 > 0.5 and par2 <= 5. Use:

params = s.Parameters;

mdl_index = find(params(1).Value>0.5 & params(2).Value<=5);

The expression params(1).Value>0.5 & params(2).Value<5 returns a logical
array. find returns the linear index of every true entry in the logical array

Output Arguments

sys — Sensitivity function
state-space model

Sensitivity function, returned as described below:

• If you did not configure s.Parameters and s.OperatingPoints, the software
calculates sys using the default model parameter values. The software uses the model
initial conditions as the linearization operating point. sys is returned as a state-space
model.

• If you configured s.Parameters only, the software computes a linearization for each
parameter grid point. sys is returned as a state-space model array of the same size as
the parameter grid.

• If you configured s.OperatingPoints only, the software computes a linearization
for each specified operating point. sys is returned as a state-space model array of the
same size as s.OperatingPoints.
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• If you configured s.Parameters and specified s.OperatingPoints as a single
operating point, the software computes a linearization for each parameter grid point.
The software uses the specified operating point as the linearization operating point.
sys is returned as a state-space model array of the same size as the parameter grid.

• If you configured s.Parameters and specified s.OperatingPoints as multiple
operating point objects, the software computes a linearization for each parameter
grid point. The software requires that s.OperatingPoints is the same size as
the parameter grid specified by s.Parameters. The software computes each
linearization using corresponding operating points and parameter grid points. sys is
returned as a state-space model array of the same size as the parameter grid.

• If you configured s.Parameters and specified s.OperatingPoints as multiple
simulation snapshot times, the software simulates and linearizes the model for
each snapshot time and parameter grid point combination. Suppose you specify a
parameter grid of size p and N snapshot times. sys is returned as a state-space model
array of size N-by-p.

More About

Sensitivity Function

The sensitivity function, also referred to simply as sensitivity, measures how sensitive a
signal is to an added disturbance. Sensitivity is a closed-loop measure. Feedback reduces
the sensitivity in the frequency band where the open-loop gain is greater than 1.

To compute the sensitivity at an analysis point, x, the software injects a disturbance
signal, dx, at the point. Then, the software computes the transfer function from dx to x,
which is equal to the sensitivity function at x.

Analysis Point in Simulink
Model

How getSensitivity Interprets
the Analysis Point

Sensitivity Function

x dx

+

+

    x Transfer function from dx to
x
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For example, consider the following model where you compute the sensitivity function at
u:
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u

Sensitivity

Controller Plant

Here, the software injects a disturbance signal (du) at u. The sensitivity at u, Su, is the
transfer function from du to u. The software calculates Su as follows:

u du KGu
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Here, I is an identity matrix of the same size as KG.

Similarly, to compute the sensitivity at y, the software injects a disturbance signal (dy)
at y. The software computes the sensitivity function as the transfer function from dy to
y. This transfer function is equal to (I+GK)-1, where I is an identity matrix of the same
size as GK.

The software does not modify the Simulink model when it computes the sensitivity
transfer function.

Analysis Point

Analysis points, used by the slLinearizer and slTuner interfaces, identify locations
within a model that are relevant for linear analysis and control system tuning. You
use analysis points as inputs to the linearization commands, such as getIOTransfer,
getLoopTransfer, getSensitivity, and getCompSensitivity. As inputs to the
linearization commands, analysis points can specify any open- or closed-loop transfer
function in a model. You can also use analysis points to specify design requirements



6 Alphabetical List

6-242

when tuning control systems using commands such as systune (requires a Robust
Control Toolbox license).

Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an analysis point.

You can add analysis points to an slLinearizer or slTuner interface, s, when you
create the interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

Alternatively, you can use the addPoint command.

To view all the analysis points of s, type s at the command prompt to display the
interface contents. For each analysis point of s, the display includes the block name and
port number and the name of the signal that originates at this point. You can also use
getPoints to programmatically obtain a list of all the analysis points.

For more information about how you can use analysis points, see “Managing Signals in
Control System Analysis and Design”.

Permanent Openings

Permanent openings, used by the slLinearizer and slTuner interfaces, identify
locations within a model where the software breaks the signal flow. The software
enforces these openings for linearization and tuning. Use permanent openings to isolate
a specific model component. Suppose you have a large-scale model capturing aircraft
dynamics and you want to perform linear analysis on the airframe only. You can use
permanent openings to exclude all other components of the model. Another example is
when you have cascaded loops within your model and you want to analyze a specific loop.

Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an opening.

You can add permanent openings to an slLinearizer or slTuner interface, s, when
you create the interface or by using the addOpening command. To remove a location
from the list of permanent openings, use the removeOpening command.

To view all the openings of s, type s at the command prompt to display the interface
contents. For each permanent opening of s, the display includes the block name and
port number and the name of the signal that originates at this location. You can also use
getOpenings to programmatically obtain a list of all the permanent openings.
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• “How the Software Treats Loop Openings”

See Also
addOpening | addPoint | getCompSensitivity | getIOTransfer |
getLoopTransfer | slLinearizer | slTuner
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refresh

Resynchronize slLinearizer or slTuner interface with current model state

Syntax

refresh(s)

Description

refresh(s) resynchronizes the slLinearizer or slTuner interface, s, with the
current state of the model. The interface recompiles the model for the next call
to functions that either return transfer functions (such as getIOTransfer and
getLoopTransfer) or functions that tune model parameters (such as systune or
looptune). This model recompilation ensures that the interface uses the current model
state when computing linearizations. Block parameterizations and values for tuned
blocks are preserved. Use setBlockParam to sync blocks with the model.

Use this command after you make changes to the model that impact linearization.
Changes that impact linearization include modifying parameter values and reconfiguring
blocks and signals.

Examples

Resynchronize slLinearizer Interface with Current Model State

Create an slLinearizer interface.

sllin = slLinearizer('scdcascade');

Generally, you configure the interface with analysis points, openings, operating points,
and parameter values. Then, you linearize the model using the getIOTransfer,
getLoopTransfer, getSensitivity, and getCompSensitivity commands. The first
time you call one of these commands with sllin, the software stores the state of the
model in sllin and uses it to compute the linearization.
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You can change the model after your first call to getIOTransfer, getLoopTransfer,
getSensitivity, or getCompSensitivity with sllin. Some changes impact
the linearization, such as changing parameter values. If your change impacts the
linearization, call refresh to get expected linearization results. For this example,
change the proportional gain of the C2 PID controller block.

set_param('scdcascade/C2','P','10')

Trigger the interface to recompile the model for the next call to getIOTransfer,
getLoopTransfer, getSensitivity, or getCompSensitivity.

refresh(sllin);

Resynchronize slTuner Interface with Current Model State

Create an slTuner interface.

st = slTuner('scdcascade','C2');

Generally, you configure the interface with analysis points, openings, operating points,
and parameter values. Then, you tune the model block parameters using the systune
and looptune commands. You can also analyze various transfer functions in the model
using commands such as getIOTransfer and getLoopTransfer. The first time you
call one of these commands with st, the software stores the state of the model in st and
uses it to compute the linearization.

You can change the model after your first call to one of these commands. Some changes
impact the linearization, such as changing parameter values. If your change impacts
the linearization, call refresh to get expected linearization results. For this example,
change the proportional gain of the C1 PID controller block.

set_param('scdcascade/C1','P','10')

Trigger the interface to recompile the model for the next call to commands such as
getIOTransfer, getLoopTransfer, or systune.

refresh(st);

Input Arguments

s — Interface to Simulink model
slLinearizer interface | slTuner interface
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Interface to a Simulink model, specified as either an slLinearizer interface or an
slTuner interface.

See Also
getCompSensitivity | getIOTransfer | getLoopTransfer | getSensitivity |
looptune | slLinearizer | slTuner | systune
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removeAllOpenings
Remove all openings from list of permanent openings in slLinearizer or slTuner
interface

Syntax

removeAllOpenings(s)

Description

removeAllOpenings(s) removes all openings from the list of permanent openings in
the slLinearizer or slTuner interface, s. This function does not modify the Simulink
model associated with s.

Examples

Remove All Openings from slLinearizer Interface

Create an slLinearizer interface for the scdcascade model.

sllin = slLinearizer('scdcascade');

Generally, you configure the interface with analysis points, openings, operating points,
and parameter values. For this example, add two openings to the interface.

addOpening(sllin,{'y2m','y1m'});

'y2m' and 'y1m' are the names of two feedback signals in the scdcascade model. The
addOpening command adds these signals to the list of openings for sllin.

Remove all the openings from sllin.

removeAllOpenings(sllin);

To verify that all openings have been removed, display the contents of sllin, and
examine the information about the interface openings.

sllin
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slLinearizer linearization interface for "scdcascade":

No analysis points. Use addPoint method to add new points.

No permanent openings. Use addOpening method to add new permanent openings.

Other properties (with dot notation get/set access):

      Parameters         : [] 

      OperatingPoints    : [] (model initial condition will be used.)

      BlockSubstitutions : []

      Options            : [1x1 linearize.LinearizeOptions]

Input Arguments

s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an
slTuner interface.

More About

Permanent Openings

Permanent openings, used by the slLinearizer and slTuner interfaces, identify
locations within a model where the software breaks the signal flow. The software
enforces these openings for linearization and tuning. Use permanent openings to isolate
a specific model component. Suppose you have a large-scale model capturing aircraft
dynamics and you want to perform linear analysis on the airframe only. You can use
permanent openings to exclude all other components of the model. Another example is
when you have cascaded loops within your model and you want to analyze a specific loop.

Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an opening.

You can add permanent openings to an slLinearizer or slTuner interface, s, when
you create the interface or by using the addOpening command. To remove a location
from the list of permanent openings, use the removeOpening command.

To view all the openings of s, type s at the command prompt to display the interface
contents. For each permanent opening of s, the display includes the block name and
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port number and the name of the signal that originates at this location. You can also use
getOpenings to programmatically obtain a list of all the permanent openings.

See Also
addOpening | removeOpening | slLinearizer | slTuner
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removeAllPoints
Remove all points from list of analysis points in slLinearizer or slTuner interface

Syntax

removeAllPoints(s)

Description

removeAllPoints(s) removes all points from the list of analysis points for the
slLinearizer or slTuner interface, s. This function does not modify the model
associated with s.

Examples

Remove All Analysis Points

Create an slLinearizer interface for the scdcascade model. Add analysis points for
the r, e1, and y1m signals.
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sllin = slLinearizer('scdcascade',{'r','e1','y1m'})

slLinearizer linearization interface for "scdcascade":

3 Analysis points: 

--------------------------

Point 1:

- Block: scdcascade/setpoint

- Port: 1

- Signal Name: r

Point 2:

- Block: scdcascade/Sum1

- Port: 1

- Signal Name: e1

Point 3:

- Block: scdcascade/Sum

- Port: 1

- Signal Name: y1m

No permanent openings. Use addOpening method to add new permanent openings.

Other properties (with dot notation get/set access):

      Parameters         : [] 

      OperatingPoints    : [] (model initial condition will be used.)

      BlockSubstitutions : []

      Options            : [1x1 linearize.LinearizeOptions]

Remove all signals from the list of interface analysis points.

removeAllPoints(sllin);

To verify that all analysis points have been removed, display the contents of sllin, and
examine the information about the interface analysis points.

sllin

slLinearizer linearization interface for "scdcascade":

No analysis points. Use addPoint method to add new points.

No permanent openings. Use addOpening method to add new permanent openings.

Other properties (with dot notation get/set access):

      Parameters         : [] 

      OperatingPoints    : [] (model initial condition will be used.)

      BlockSubstitutions : []
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      Options            : [1x1 linearize.LinearizeOptions]

Input Arguments

s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an
slTuner interface.

More About

Analysis Points

Analysis points, used by the slLinearizer and slTuner interfaces, identify locations
within a model that are relevant for linear analysis and control system tuning. You
use analysis points as inputs to the linearization commands, such as getIOTransfer,
getLoopTransfer, getSensitivity, and getCompSensitivity. As inputs to the
linearization commands, analysis points can specify any open- or closed-loop transfer
function in a model. You can also use analysis points to specify design requirements
when tuning control systems using commands such as systune (requires a Robust
Control Toolbox license).

Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an analysis point.

You can add analysis points to an slLinearizer or slTuner interface, s, when you
create the interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

Alternatively, you can use the addPoint command.

To view all the analysis points of s, type s at the command prompt to display the
interface contents. For each analysis point of s, the display includes the block name and
port number and the name of the signal that originates at this point. You can also use
getPoints to programmatically obtain a list of all the analysis points.

For more information about how you can use analysis points, see “Managing Signals in
Control System Analysis and Design”.
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See Also
addPoint | removePoint | slLinearizer | slTuner
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removeOpening
Remove opening from list of permanent loop openings in slLinearizer or slTuner
interface

Syntax
removeOpening(s,op)

Description
removeOpening(s,op) removes the specified opening, op, from the list of permanent
openings for the slLinearizer or slTuner interface, s. You can specify op to remove
either a single or multiple openings.

removeOpening does not modify the model associated with s.

Examples
Remove Opening Using Signal Name

Create an slLinearizer interface for the scdcascade model.

sllin = slLinearizer('scdcascade');

Generally, you configure the interface with analysis points, openings, operating points,
and parameter values. For this example, add only openings to the interface.

addOpening(sllin,{'y2m','y1m','u1'});

'y2m', 'y1m', and 'u1' are the names of signals in the scdcascade model. The
addOpening command adds these signals to the list of permanent openings for sllin.

Remove the 'y1m' opening from sllin.

removeOpening(sllin,'y1m');

Remove Multiple Openings Using Signal Names

Create an slLinearizer interface for the scdcascade model.
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sllin = slLinearizer('scdcascade');

Generally, you configure the interface with analysis points, openings, operating points,
and parameter values. For this example, add only openings to the interface.

addOpening(sllin,{'y2m','y1m','u1'});

'y2m', 'y1m', and 'u1' are the names of signals in the scdcascade model. The
addOpening command adds these signals to the list of permanent openings for sllin.

Remove the 'y1m' and 'y2m' openings from sllin.

removeOpening(sllin,{'y1m','y2m'});

Remove Opening Using Index

Create an slLinearizer interface for the scdcascade model.

sllin = slLinearizer('scdcascade');

Generally, you configure the interface with analysis points, loop openings, operating
points, and parameter values. For this example, add only openings to the interface.

addOpening(sllin,{'y2m','y1m','u1'});

'y2m', 'y1m', and 'u1' are the names of signals in the scdcascade model. The
addOpening command adds these signals to the list of permanent openings for sllin.

Determine the index number of the opening you want to remove. To do this, display
the contents of the interface, which includes opening index numbers, in the Command
Window.

For this example, remove the 'y1m' opening from sllin.

sllin

slLinearizer linearization interface for "scdcascade":

No analysis points. Use addPoint method to add new points.

3 Permanent openings: 

--------------------------

Opening 1:

- Block: scdcascade/Sum3

- Port: 1

- Signal Name: y2m
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Opening 2:

- Block: scdcascade/Sum

- Port: 1

- Signal Name: y1m

Opening 3:

- Block: scdcascade/C1

- Port: 1

- Signal Name: u1

Other properties (with dot notation get/set access):

      Parameters         : [] 

      OperatingPoints    : [] (model initial condition will be used.)

      BlockSubstitutions : []

      Options            : [1x1 linearize.LinearizeOptions]

The displays shows that 'y1m' is the second opening of sllin .

Remove the opening from the interface.

removeOpening(sllin,2);

Remove Multiple Openings Using Index

Create an slLinearizer interface for the scdcascade model.

sllin = slLinearizer('scdcascade');

Generally, you configure the interface with analysis points, openings, operating points,
and parameter values. For this example, add only openings to the interface.

addOpening(sllin,{'y2m','y1m','u1'});

'y2m', 'y1m', and 'u1' are the names of signals in the scdcascade model. The
addOpening command adds these signals to the list of permanent openings for sllin.

Determine the index numbers of the openings you want to remove. To do this, display
the contents of the interface, which includes opening index numbers, in the Command
Window.

For this example, remove the 'y2m' and 'y1m' openings from sllin.

sllin

slLinearizer linearization interface for "scdcascade":
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No analysis points. Use addPoint method to add new points.

3 Permanent openings: 

--------------------------

Opening 1:

- Block: scdcascade/Sum3

- Port: 1

- Signal Name: y2m

Opening 2:

- Block: scdcascade/Sum

- Port: 1

- Signal Name: y1m

Opening 3:

- Block: scdcascade/C1

- Port: 1

- Signal Name: u1

Other properties (with dot notation get/set access):

      Parameters         : [] 

      OperatingPoints    : [] (model initial condition will be used.)

      BlockSubstitutions : []

      Options            : [1x1 linearize.LinearizeOptions]

The displays shows that 'y2m' and 'y1m' are the first and second openings of sllin .

Remove the openings from the interface.

removeOpening(sllin,[1 2]);

Input Arguments

s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an
slTuner interface.

op — Opening
string | cell array of strings | positive integer | vector of positive integers

Opening to remove from the list of permanent openings for s, specified as:
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• String — Opening signal name.

To determine the signal name associated with an opening, type s. The software
displays the contents of s in the MATLAB command window, including the opening
signal names, block names, and port numbers. Suppose an opening does not have a
signal name, but only a block name and port number. You can specify op as the block
name.

You can specify op as a uniquely matching substring of the full signal name or block
name. Suppose the full signal name of an opening is 'LoadTorque'. You can specify
op as 'Torque' as long as 'Torque' is not a substring of the signal name for any
other opening of s.

For example, op = 'y1m'.
• Cell array of strings — Specifies multiple opening names. For example, op =

{'y1m','y2m'}.
• Positive integer — Opening index.

To determine the index of an opening, type s. The software displays the contents of s
in the MATLAB command window, including the opening indices. For example, op =
1.

• Vector of positive integers — Specifies multiple opening indices. For example, op =
[1 2].

More About

Permanent Openings

Permanent openings, used by the slLinearizer and slTuner interfaces, identify
locations within a model where the software breaks the signal flow. The software
enforces these openings for linearization and tuning. Use permanent openings to isolate
a specific model component. Suppose you have a large-scale model capturing aircraft
dynamics and you want to perform linear analysis on the airframe only. You can use
permanent openings to exclude all other components of the model. Another example is
when you have cascaded loops within your model and you want to analyze a specific loop.

Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an opening.
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You can add permanent openings to an slLinearizer or slTuner interface, s, when
you create the interface or by using the addOpening command. To remove a location
from the list of permanent openings, use the removeOpening command.

To view all the openings of s, type s at the command prompt to display the interface
contents. For each permanent opening of s, the display includes the block name and
port number and the name of the signal that originates at this location. You can also use
getOpenings to programmatically obtain a list of all the permanent openings.

See Also
addOpening | removeAllOpenings | removePoint | slLinearizer | slTuner
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removePoint
Remove point from list of analysis points in slLinearizer or slTuner interface

Syntax

removePoint(s,pt)

Description

removePoint(s,pt) removes the specified point, pt, from the list of analysis points for
the slLinearizer or slTuner interface, s. You can specify pt to remove either a single
or multiple points.

removePoint does not modify the model associated with s.

Examples

Remove Analysis Point Using Signal Name

Create an slLinearizer interface for the scdcascade model. Add analysis points for
the r, e1, and y1m signals.
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sllin = slLinearizer('scdcascade',{'r','e1','y1m'});

Remove the y1m point from the interface.

removePoint(sllin,'y1m');

Remove Multiple Analysis Points Using Signal Name

Create an slLinearizer interface for the scdcascade model. Add analysis points for
the r, e1, and y1m signals.

sllin = slLinearizer('scdcascade',{'r','e1','y1m'});

Remove the y1m and e1 points from the interface.

removePoint(sllin,{'y1m','e1'});

Remove Analysis Point Using Index

Create an slLinearizer interface for the scdcascade model. Add analysis points for
the r, e1, and y1m signals.
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sllin = slLinearizer('scdcascade',{'r','e1','y1m'});

Determine the index number of the point you want to remove. To do this, display the
contents of the interface, which includes analysis point index numbers, in the Command
Window.

For this example, remove the y1m point from sllin.

sllin

slLinearizer linearization interface for "scdcascade":

3 Analysis points: 

--------------------------

Point 1:

- Block: scdcascade/setpoint

- Port: 1

- Signal Name: r

Point 2:

- Block: scdcascade/Sum1

- Port: 1

- Signal Name: e1

Point 3:

- Block: scdcascade/Sum

- Port: 1

- Signal Name: y1m
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No permanent openings. Use addOpening method to add new permanent openings.

Other properties (with dot notation get/set access):

      Parameters         : [] 

      OperatingPoints    : [] (model initial condition will be used.)

      BlockSubstitutions : []

      Options            : [1x1 linearize.LinearizeOptions]

The displays shows that y1m is the third analysis point of sllin .

Remove the point from the interface.

removePoint(sllin,3);

Remove Multiple Analysis Points Using Index

Create an slLinearizer interface for the scdcascade model. Add analysis points for
the r, e1, and y1m signals.

sllin = slLinearizer('scdcascade',{'r','e1','y1m'});

Determine the index numbers of the points you want to remove. To do this, display the
contents of the interface, which includes analysis point index numbers, in the Command
Window.

For this example, remove the e1 and y1m points from sllin.

sllin
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slLinearizer linearization interface for "scdcascade":

3 Analysis points: 

--------------------------

Point 1:

- Block: scdcascade/setpoint

- Port: 1

- Signal Name: r

Point 2:

- Block: scdcascade/Sum1

- Port: 1

- Signal Name: e1

Point 3:

- Block: scdcascade/Sum

- Port: 1

- Signal Name: y1m

No permanent openings. Use addOpening method to add new permanent openings.

Other properties (with dot notation get/set access):

      Parameters         : [] 

      OperatingPoints    : [] (model initial condition will be used.)

      BlockSubstitutions : []

      Options            : [1x1 linearize.LinearizeOptions]

The displays shows that e1 and y1m are the second and third analysis points of sllin .

Remove the points from the interface.

removePoint(sllin,[2 3]);

Input Arguments

s — Interface to Simulink model
slLinearizer interface | slTuner interface

Interface to a Simulink model, specified as either an slLinearizer interface or an
slTuner interface.

pt — Analysis point
string | cell array of strings | positive integer | vector of positive integers
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Analysis point to remove from the list of analysis points for s, specified as:

• String — Analysis point signal name.

To determine the signal name associated with an analysis point, type s. The software
displays the contents of s in the MATLAB command window, including the analysis
point signal names, block names, and port numbers. Suppose an analysis point does
not have a signal name, but only a block name and port number. You can specify pt as
the block name.

You can specify pt as a uniquely matching substring of the full signal name or block
name. Suppose the full signal name of an analysis point is 'LoadTorque'. You can
specify pt as 'Torque' as long as 'Torque' is not a substring of the signal name for
any other analysis point of s.

For example, pt = 'y1m'.
• Cell array of strings — Specifies multiple analysis point names. For example, pt =

{'y1m','y2m'}.
• Positive integer or — Analysis point index.

To determine the index of an analysis point, type s. The software displays the
contents of s in the MATLAB command window, including the analysis points indices.

For example, pt = 1.
• Vector of positive integers — Specifies multiple analysis point indices. For example,

pt = [1 2].

More About

Analysis Points

Analysis points, used by the slLinearizer and slTuner interfaces, identify locations
within a model that are relevant for linear analysis and control system tuning. You
use analysis points as inputs to the linearization commands, such as getIOTransfer,
getLoopTransfer, getSensitivity, and getCompSensitivity. As inputs to the
linearization commands, analysis points can specify any open- or closed-loop transfer
function in a model. You can also use analysis points to specify design requirements
when tuning control systems using commands such as systune (requires a Robust
Control Toolbox license).
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Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an analysis point.

You can add analysis points to an slLinearizer or slTuner interface, s, when you
create the interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

Alternatively, you can use the addPoint command.

To view all the analysis points of s, type s at the command prompt to display the
interface contents. For each analysis point of s, the display includes the block name and
port number and the name of the signal that originates at this point. You can also use
getPoints to programmatically obtain a list of all the analysis points.

For more information about how you can use analysis points, see “Managing Signals in
Control System Analysis and Design”.

See Also
addPoint | removeAllPoints | removeOpening | slLinearizer | slTuner
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addBlock
Add block to list of tuned blocks for slTuner interface

Syntax

addBlock(st,blk)

Description

addBlock(st,blk) adds the block referenced by blk to the list of tuned blocks of the
slTuner interface, st.

Examples

Add Block to slTuner Interface

Create an slTuner interface for the Simulink model scdcascade, and add a block to the
list of tuned blocks of the interface.

st = slTuner('scdcascade','C1');
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addBlock(st,'C2');

Input Arguments

st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.

blk — Block
string | cell array of strings

Block to add to the list of tuned blocks for st, specified as:

• String — Block path. You can specify the full block path or a partial path. The partial
path must match the end of the full block path and unambiguously identify the block
to add. For example, you can refer to a block by its name, provided the block name
appears only once in the Simulink model.

For example, blk = 'scdcascade/C1'.
• Cell array of strings — Multiple block paths.

For example, blk = {'scdcascade/C1','scdcascade/C2'}.

More About

Tuned Block

Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose
parameters are to be tuned to satisfy tuning goals. You can tune most Simulink blocks
that represent linear elements such as gains, transfer functions, or state-space models.
(For the complete list of blocks that support tuning, see “How Tuned Simulink Blocks
Are Parameterized”.) You can also tune more complex blocks such as SubSystem or S-
Function blocks by specifying an equivalent “tunable linear model”.

Use commands such as systune and looptune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner
interface:
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st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock. Use
commands such as setBlockParam, getBlockValue, and writeBlockValue to
interact with and manipulate tuned blocks.

See Also
addOpening | addPoint | removeBlock | slTuner
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getBlockParam
Get parameterization of tuned block in slTuner interface

Syntax

blk_param = getBlockParam(st,blk)

[blk_param1,...,blk_paramN] = getBlockParam(st,blk1,...,blkN)

[blk_param1,...,blk_paramN] = getBlockParam(st)

Description

blk_param = getBlockParam(st,blk) returns the parameterization used to tune
the Simulink block, blk.

The slTuner interface automatically associates a parametric model with each Simulink
block in the list of tuned blocks. This parametrization models each tuned block as
a “Control Design Block” or a tunable genss model. The parameterization specifies
which parameters are tuned by commands such as systune or looptune. Use
getBlockParam to access this parameterization.

Use setBlockParam to override the default parameterization for a given block, and
setBlockValue to initialize or modify the tuned parameter values in blk_param.

[blk_param1,...,blk_paramN] = getBlockParam(st,blk1,...,blkN) returns
the parameterizations of one or more blocks.

[blk_param1,...,blk_paramN] = getBlockParam(st) returns the
parameterizations of all the tuned blocks of st (in their order of appearance in
st.TunedBlocks).

Examples

Get Parameterization of Tuned Block

Create an slTuner interface for the Simulink model, scdcascade, and examine the
block parameterization of one of the tuned blocks.
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open_system('scdcascade');

st = slTuner('scdcascade',{'C1','C2'});

blk_param = getBlockParam(st,'C1')

blk_param =

  Parametric continuous-time PID controller "C1" with formula:

             1 

  Kp + Ki * ---

             s 

  and tunable parameters Kp, Ki.

Type "pid(blk_param)" to see the current value and "get(blk_param)" to see all properties.

The block C1 is a PID Controller block. Therefore, its parameterization in st is a
ltiblock.pid (a Control Design Block).

Input Arguments
st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.

blk — Block
string

Block in the list of tuned blocks for st, specified as a string.

You can specify the full block path or any portion of the block path that uniquely
identifies the block among the other tuned blocks of st.

For example, blk = 'scdcascade/C1' or blk = 'C1'.

Output Arguments
blk_param — Parameterization of tuned block
control design block | generalized state-space model | []
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Parameterization of the specified tuned block, returned as one of the following:

• A tunable “Control Design Block”.
• A tunable genss model, if you specified a parameterization for blk using

setBlockParam.
• An empty array ([]), if slTuner cannot parameterize blk. You can use

setBlockParam to specify a parameterization for such blocks.

More About

Tuned Blocks

Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose
parameters are to be tuned to satisfy tuning goals. You can tune most Simulink blocks
that represent linear elements such as gains, transfer functions, or state-space models.
(For the complete list of blocks that support tuning, see “How Tuned Simulink Blocks
Are Parameterized”.) You can also tune more complex blocks such as SubSystem or S-
Function blocks by specifying an equivalent “tunable linear model”.

Use commands such as systune and looptune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner
interface:

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock. Use
commands such as setBlockParam, getBlockValue, and writeBlockValue to
interact with and manipulate tuned blocks.
• “How Tuned Simulink Blocks Are Parameterized”

See Also
genss | getBlockValue | ltiblock.pid | setBlockParam | slTuner
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getBlockRateConversion
Get rate conversion settings for tuned block in slTuner interface

Syntax

method = getBlockRateConversion(st,blk)

[method,pwf] = getBlockRateConversion(st,blk)

Description

method = getBlockRateConversion(st,blk) returns the rate conversion method
associated with the tuned block, blk.

Tuning is performed at the sampling rate specified by the Ts property of the slTuner
interface. When you use writeBlockValue to write tuned parameters back to the
Simulink model, each tuned block value is automatically converted from the sample, Ts,
to the sample time of the Simulink block. The rate conversion method associated with
each tuned block specifies how this resampling operation should be performed.

[method,pwf] = getBlockRateConversion(st,blk) also returns the prewarp
frequency. When method is not 'tustin', the prewarp frequency is always 0.

Examples

Get Rate Conversion Settings of Tuned Block

Create an slTuner interface for the Simulink model, scdcascade, and examine the
block rate conversion settings of one of the tuned blocks.

open_system('scdcascade');

st = slTuner('scdcascade',{'C1','C2'});

[method,pwf] = getBlockRateConversion(st,'C1')

method =
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tustin

pwf =

     0

• “Tuning of a Digital Motion Control System”

Input Arguments

st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.

blk — Block
string

Block in the list of tuned blocks for st, specified as a string.

You can specify the full block path or any portion of the block path that uniquely
identifies the block among the other tuned blocks of st.

For example, blk = 'scdcascade/C1' or blk = 'C1'.

Output Arguments

method — Rate conversion method
'zoh' | 'tustin'

Rate conversion method associated with blk, returned as one of the following strings:

• 'zoh' — Zero-order hold method
• 'tustin' — Tustin method

pwf — Prewarp frequency for Tustin method
positive scalar
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Prewarp frequency for the Tustin method, returned as a positive scalar.

If the rate conversion method associated with blk is zero-order hold or Tustin without
prewarp, then pwf is 0.

More About

Tuned Blocks

Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose
parameters are to be tuned to satisfy tuning goals. You can tune most Simulink blocks
that represent linear elements such as gains, transfer functions, or state-space models.
(For the complete list of blocks that support tuning, see “How Tuned Simulink Blocks
Are Parameterized”.) You can also tune more complex blocks such as SubSystem or S-
Function blocks by specifying an equivalent “tunable linear model”.

Use commands such as systune and looptune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner
interface:

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock. Use
commands such as setBlockParam, getBlockValue, and writeBlockValue to
interact with and manipulate tuned blocks.
• “Continuous-Discrete Conversion Methods”

See Also
setBlockRateConversion | slTuner | writeBlockValue
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getBlockValue

Get current value of tuned block parameterization in slTuner interface

Syntax

val = getBlockValue(st,blk)

[val1,...,valN] = getBlockValue(st,blk1,...,blkN)

[val1,...,valN] = getBlockValue(st)

Description

val = getBlockValue(st,blk) returns the current value of the parameterization of
the Simulink block, blk.

The slTuner interface automatically associates a parametric model with each Simulink
block in its list of tuned blocks. This parameterization expresses each tuned block as a
“Control Design Block” or a tunable genss model. The parameterization specifies which
parameters are tuned by commands such as systune. Use getBlockValue to access the
value of this parameterization after tuning.

blk can also specify a particular tunable element of a custom parameterization of a
tunable block in an slTuner interface. If you use setBlockParam to assign a custom
genss model parameterization of a tuned block, setting blk to the name of a tunable
element lets you query the current value of a particular tunable element of the genss
model.

Use setBlockParam or writeBlockValue to align the block parameterization values
with the actual block values in the Simulink model.

[val1,...,valN] = getBlockValue(st,blk1,...,blkN) returns the current
values of the parameterizations of one or more blocks.

[val1,...,valN] = getBlockValue(st) returns the current values of the
parameterizations of all the tuned blocks of st (in their order of appearance in
st.TunedBlocks).
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Examples

Get Current Parameterization Value of Tuned Block

Create an slTuner interface for the Simulink model scdcascade, and examine the
current value of the block parameterization of one of the tuned blocks.

open_system('scdcascade')

st = slTuner('scdcascade',{'C1','C2'});

val = getBlockValue(st,'C1')

val =

 

             1 

  Kp + Ki * ---

             s 

  with Kp = 0.158, Ki = 0.042

 

Name: C1

Continuous-time PI controller in parallel form.

Query Value of Single Tunable Element within Custom Parameterization

Create an slTuner interface for the scdcascade model. Set a custom parameterization
of one of the tunable blocks.

open_system('scdcascade');

st = slTuner('scdcascade',{'C1','C2'});

C1CustParam = realp('Kp',1) + tf(1,[1 0]) * realp('Ki',1);

setBlockParam(st,'C1',C1CustParam);

These commands set the parameterization of the C1 controller block to a generalized
state-space (genss) model containing two tunable parameters, 'Ki' and 'Kp'..

Initialize the value of Ki to 10, without changing the current value of 'Kp'

setBlockValue(st,'Ki',10);

Typically, you would use a tuning command such as systune to tune the values of the
parameters in the custom parameterization. After tuning, use getBlockValue to query
the tuned value of 'Ki' as follows.
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KiTuned = getBlockValue(st,'Ki');

Input Arguments

st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.

blk — Block or tunable element
string

Block in the list of tuned blocks for st or tunable element of custom parameterization,
specified as a string.

You can specify the full block path or any portion of the block path that uniquely
identifies the block among the other tuned blocks of st.

For example, blk = 'scdcascade/C1' or blk = 'C1'.

blk can also specify a particular tunable element of a custom parameterization of a
tunable block in an slTuner interface. If you use setBlockParam to assign a custom
genss model parameterization of a tuned block, setting blk to the name of a tunable
element lets you query the current value of a particular tunable element of the genss
model.

Output Arguments

val — Current value of block parameterization
numeric LTI model

Current value of block parameterization, returned as a “numeric LTI model” such as pid,
ss, or tf.
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More About

Tuned Blocks

Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose
parameters are to be tuned to satisfy tuning goals. You can tune most Simulink blocks
that represent linear elements such as gains, transfer functions, or state-space models.
(For the complete list of blocks that support tuning, see “How Tuned Simulink Blocks
Are Parameterized”.) You can also tune more complex blocks such as SubSystem or S-
Function blocks by specifying an equivalent “tunable linear model”.

Use commands such as systune and looptune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner
interface:

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock. Use
commands such as setBlockParam, getBlockValue, and writeBlockValue to
interact with and manipulate tuned blocks.

See Also
getBlockParam | setBlockParam | setBlockValue | slTuner | writeBlockValue
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looptune
Tune MIMO feedback loops in Simulink using slTuner interface

Syntax

[st,gam,info] = looptune(st0,controls,measurements,wc)

[st,gam,info] = looptune(st0,controls,measurements,wc,req1,...,reqN)

[st,gam,info] = looptune( ___ ,opt)

Description

[st,gam,info] = looptune(st0,controls,measurements,wc) tunes the free
parameters of the control system of the Simulink model associated with the slTuner
interface, st0, to achieve the following goals:

• Bandwidth — Gain crossover for each loop falls in the frequency interval wc
• Performance — Integral action at frequencies below wc
• Robustness — Adequate stability margins and gain roll-off at frequencies above wc

controls and measurements are strings that specify the controller output signals and
measurement signals that are subject to the goals, respectively. st is the updated
slTuner interface, gam indicates the measure of success in satisfying the goals, and info
gives details regarding the optimization run.

Tuning is performed at the sample time specified by the Ts property of st0. For tuning
algorithm details, see “Algorithms” on page 6-286.

This command requires a Robust Control Toolbox license.

[st,gam,info] = looptune(st0,controls,measurements,wc,req1,...,reqN)

tunes the feedback loop to meet additional goals specified in one or more tuning goal
objects, req. Omit wc to drop the default loop shaping goal associated with wc. Note that
the stability margin goals remain in force.

[st,gam,info] = looptune( ___ ,opt) specifies further options, including target
gain and phase margins, number of runs, and computation options for the tuning
algorithm. Use looptuneOptions to create opt.
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If you specify multiple runs using the RandomStarts property of opt, looptune
performs only as many runs required to achieve the target objective value of 1. Note
that all tuning goals should be normalized so that a maximum value of 1 means that all
design goals are met.

Examples

Tune Controller to Achieve Specified Bandwidth

Tune the PID Controller in the rct_engine_speed model to achieve the specified
bandwidth.

Create an slTuner interface for the model.

open_system('rct_engine_speed');

st0 = slTuner('rct_engine_speed','PID Controller');

Add the PID Controller output, u, as an analysis point to st0.

addPoint(st0,'u');

Based on first-order characteristics, the crossover frequency should exceed 1 rad/s for the
closed-loop response to settle in less than 5 seconds. So, tune the PID loop using 1 rad/s
as the target 0 dB crossover frequency.

wc = 1;

st = looptune(st0,'u','Speed',wc);

Final: Peak gain = 0.961, Iterations = 10

Achieved target gain value TargetGain=1.



6 Alphabetical List

6-282

In the call to looptune, 'u' specifies the control signal, and 'Speed' specifies the
measured signal.

Compare the tuned and initial response.

stepplot(getIOTransfer(st0,'Ref','Speed'),getIOTransfer(st,'Ref','Speed'));

legend('Initial','Speed');

View the tuned block value.

showTunable(st)

Block 1: rct_engine_speed/PID Controller =
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             1            s    

  Kp + Ki * --- + Kd * --------

             s          Tf*s+1 

  with Kp = 0.000653, Ki = 0.00282, Kd = 0.0021, Tf = 46.7

 

Name: PID_Controller

Continuous-time PIDF controller in parallel form.

To write the tuned values back to the Simulink model, use writeBlockValue.

• “Tuning Control Systems in Simulink”
• “Decoupling Controller for a Distillation Column”
• “Tuning of a Digital Motion Control System”
• “Tuning of a Two-Loop Autopilot”

Input Arguments

st0 — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.

controls — Controller output
string | cell array of strings

Controller output name, specified as one of the following:

• String — Name of an analysis point of st0.

You can specify the full name or any portion of the name that uniquely identifies the
analysis point among the other analysis points of st0.

For example, 'u'.
• Cell array of strings — Multiple analysis point names.

For example, {'u','y'}.

measurements — Measurement
string | cell array of strings
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Measurement signal name, specified as one of the following:

• String — Name of an analysis point of st0.

You can specify the full name or any portion of the name that uniquely identifies the
analysis point among the other analysis points of st0.

For example, 'u'.
• Cell array of strings — Multiple analysis point names.

For example, {'u','y'}.

wc — Target crossover region
[wcmin,wcmax] | positive scalar

Target crossover region, specified as one of the following:

• [wcmin,wcmax] — looptune attempts to tune all loops in the control system so that
the open-loop gain crosses 0 dB within the target crossover region.

• Positive scalar — Specifies the target crossover region as [wc/10^0.1,wc*10^0.1]
or wc +/- 0.1 decades.

Specify wc in the working time units, that is, the time units of the model.

req1,...,reqN — Design goals
TuningGoal objects

Design goals, specified as one or more TuningGoal objects.

For a complete list of the design goals you can specify, see “Tuning Goals”.

opt — Tuning algorithm options
options set created using looptuneOptions

Tuning algorithm options, specified as an options set created using looptuneOptions.

Available options include:

• Number of additional optimizations to run starting from random initial values of the
free parameters

• Tolerance for terminating the optimization
• Flag for using parallel processing
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• Specification of target gain and phase margin

Output Arguments

st — Tuned interface
slTuner interface

Tuned interface, returned as an slTuner interface.

gam — Parameter indicating degree of success at meeting all tuning constraints
scalar

Parameter indicating degree of success at meeting all tuning constraints, returned as a
scalar.

A value of gam <= 1 indicates that all goals are satisfied. A value of gam >> 1 indicates
failure to meet at least one requirement. Use loopview to visualize the tuned result and
identify the unsatisfied requirement.

For best results, use the RandomStart option in looptuneOptions to obtain several
minimization runs. Setting RandomStart to an integer N > 0 causes looptune to
run the optimization N additional times, beginning from parameter values it chooses
randomly. You can examine gam for each run to help identify an optimization result that
meets your design goals.

info — Detailed information about each optimization run
structure

Detailed information about each optimization run, returned as a structure with the
following fields:

Di,Do — Optimal input and output scalings
state-space models

Optimal input and output scalings, return as state-space models.

The scaled plant is given by Do\G*Di.

Specs — Design goals used for tuning
vector of TuningGoal requirement objects
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Design goals used for tuning, returned as a vector of TuningGoal requirement objects.

Runs — Detailed information about each optimization run
structure

Detailed information about each optimization run, returned as a structure. For details,
see “Algorithms” on page 6-286.

The contents of Runs are the info output of the call to systune performed by
looptune. For information about the fields of Runs, see the info output argument
description on the systune reference page.

More About

Tuned Blocks

Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose
parameters are to be tuned to satisfy tuning goals. You can tune most Simulink blocks
that represent linear elements such as gains, transfer functions, or state-space models.
(For the complete list of blocks that support tuning, see “How Tuned Simulink Blocks
Are Parameterized”.) You can also tune more complex blocks such as SubSystem or S-
Function blocks by specifying an equivalent “tunable linear model”.

Use commands such as systune and looptune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner
interface:

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock. Use
commands such as setBlockParam, getBlockValue, and writeBlockValue to
interact with and manipulate tuned blocks.

Algorithms

looptune automatically converts target bandwidth, performance goals, and additional
design goals into weighting functions that express the goals as an H∞ optimization
problem. looptune then uses systune to optimize tunable parameters to minimize the
H∞ norm.
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For information about the optimization algorithms, see [1].

looptune computes the H∞ norm using the algorithm of [2] and structure-preserving
eigensolvers from the SLICOT library. For more information about the SLICOT library,
see http://slicot.org.
• “Structure of Control System for Tuning With looptune”
• “Set Up Your Control System for Tuning with looptune”

References

[1] P. Apkarian and D. Noll, "Nonsmooth H-infinity Synthesis." IEEE Transactions on
Automatic Control, Vol. 51, Number 1, 2006, pp. 71–86.

[2] Bruisma, N.A. and M. Steinbuch, "A Fast Algorithm to Compute the H∞-Norm of a
Transfer Function Matrix," System Control Letters, 14 (1990), pp. 287-293.

See Also
TuningGoal.Tracking | TuningGoal.Gain | TuningGoal.Margins | addPoint
| getIOTransfer | getLoopTransfer | hinfstruct | looptune (for genss) |
looptuneOptions | slTuner | systune | writeBlockValue

http://slicot.org
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looptuneSetup
Construct tuning setup for looptune to tuning setup for systune using slTuner
interface

Syntax
[st0,SoftReqs,HardReqs,sysopt] = looptuneSetup(looptuneInputs)

Description
[st0,SoftReqs,HardReqs,sysopt] = looptuneSetup(looptuneInputs)

converts a tuning setup for looptune into an equivalent tuning setup for systune. The
argument looptuneInputs is a sequence of input arguments for looptune that specifies
the tuning setup. For example,

[st0,SoftReqs,HardReqs,sysopt] = looptuneSetup(st0,wc,Req1,Req2,loopopt)

generates a set of arguments such that looptune(st0,wc,Req1,Req2,loopopt) and
systune(st0,SoftReqs,HardReqs,sysopt) produce the same results.

Use this command to take advantage of additional flexibility that systune offers relative
to looptune. For example, looptune requires that you tune all channels of a MIMO
feedback loop to the same target bandwidth. Converting to systune allows you to specify
different crossover frequencies and loop shapes for each loop in your control system.
Also, looptune treats all tuning requirements as soft requirements, optimizing them,
but not requiring that any constraint be exactly met. Converting to systune allows you
to enforce some tuning requirements as hard constraints, while treating others as soft
requirements.

You can also use this command to probe into the tuning requirements enforced by
looptune.

Examples
Convert looptune Problem into systune Problem

Convert a set of looptune inputs for tuning a Simulink model into an equivalent set of
inputs for systune.
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Suppose you have created and configured an slTuner interface, st0, for tuning with
looptune. Suppose also that you used looptune to tune the feedback loop defined in
st0 to within a bandwidth of wc = [wmin,wmax]. Convert these variables into a form
that allows you to use systune for further tuning.

[st0,SoftReqs,HardReqs,sysopt] = looptuneSetup(st0,wc,controls,measurements);

The command returns the closed-loop system and tuning requirements for the equivalent
systune command, systune(st0,SoftReqs,HardReqs,sysopt). The arrays
SoftReqs and HardReqs contain the tuning requirements implicitly imposed by
looptune. These requirements enforce the target bandwidth and default stability
margins of looptune.

If you used additional tuning requirements when tuning the system with looptune,
add them to the input list of looptuneSetup. For example, suppose you used
a TuningGoal.Tracking requirement, Req1, and a TuningGoal.Rejection
requirement, Req2. Suppose also that you set algorithm options for looptune using
looptuneOptions. Incorporate these requirements and options into the equivalent
systune command.

[st0,SoftReqs,HardReqs,sysopt] = looptuneSetup(st0,wc,Req1,Req2,loopopt);

The resulting arguments allow you to construct the equivalent tuning problem for
systune.

Convert Distillation Column Problem for Tuning With systune

Set up the control system of the Simulink model rct_distillation for tuning with
looptune. Then, convert the setup to a systune problem, and examine the resulting
arguments. The results reflect the tuning requirements implicitly enforced when tuning
with looptune.

Create an slTuner interface to the Simulink model, and specify the blocks to be tuned.
Configure the interface for tuning with looptune by adding analysis points that define
the separation between the plant and the controller. Also add the analysis points needed
for imposing tuning requirements.

open_system('rct_distillation')

tuned_blocks = {'PI_L','PI_V','DM'};

st0 = slTuner('rct_distillation',tuned_blocks);
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addPoint(st0,{'L','V','y','r','dL','dV'});

This system is now ready for tuning with looptune, using tuning goals that you specify.
For example, specify a target bandwidth range. Create a tuning requirement that
imposes reference tracking in both channels of the system, and a disturbance rejection
requirement.

wc = [0.1,0.5];

req1 = TuningGoal.Tracking('r','y',15,0.001,1);

max_disturbance_gain = frd([0.05 5 5],[0.001 0.1 10],'TimeUnit','min');

req2 = TuningGoal.Gain({'dL','dV'},'y',max_disturbance_gain);

controls = {'L','V'};

measurement = 'y';

[st,gam,info] = looptune(st0,controls,measurement,wc,req1,req2);

Final: Peak gain = 1.03, Iterations = 72

looptune successfully tunes the system to these requirements. However, you might
want to switch to systune to take advantage of additional flexibility in configuring your
problem. For example, instead of tuning both channels to a loop bandwidth inside wc, you
might want to specify different crossover frequencies for each loop. Or, you might want
to enforce the tuning requirements, req1 and req2, as hard constraints, and add other
requirements as soft requirements.

Convert the looptune input arguments to a set of input arguments for systune.

[st0,SoftReqs,HardReqs,sysopt] = looptuneSetup(st0,controls,measurement,wc,req1,req2);

This command returns a set of arguments you can feed to systune for equivalent results
to tuning with looptune. In other words, the following command is equivalent to the
looptune command.

[st,fsoft,ghard,info] = systune(st0,SoftReqs,HardReqs,sysopt);

Final: Peak gain = 1.03, Iterations = 72

Examine the tuning requirements returned by looptuneSetup. When tuning this
control system with looptune, all requirements are treated as soft requirements.
Therefore, HardReqs is empty. SoftReqs is an array of TuningGoal requirements.
These requirements together enforce the bandwidth and margins of the looptune
command, plus the additional requirements that you specified.
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SoftReqs

SoftReqs = 

  5x1 heterogeneous LoopGeneric (LoopShape, Tracking, Gain, ...) array with properties:

    Models

    Openings

    Name

For example, examine the first entry in SoftReqs.

SoftReqs(1)

ans = 

  LoopShape with properties:

       Location: {'y'}

       LoopGain: [1x1 zpk]

       CrossTol: 0.3495

    LoopScaling: 'on'

      Stabilize: 1

          Focus: [0 Inf]

         Models: NaN

       Openings: {0x1 cell}

           Name: 'Open loop GC'

looptuneSetup expresses the target crossover frequency range wc as a
TuningGoal.LoopShape requirement. This requirement constrains the open-loop gain
profile to the loop shape stored in the LoopGain property, with a crossover frequency and
crossover tolerance (CrossTol) determined by wc. Examine this loop shape.

bodemag(SoftReqs(1).LoopGain,logspace(-2,0)),grid
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The target crossover is expressed as an integrator gain profile with a crossover between
0.1 and 0.5 rad/s, as specified by wc. If you want to specify a different loop shape, you can
alter this TuningGoal.LoopShape requirement before providing it to systune.

looptune also tunes to default stability margins that you can change using
looptuneOptions. For systune, stability margins are specified using
TuningGoal.Margins requirements. Here, looptuneSetup has expressed the default
stability margins as soft TuningGoal.Margins requirements. For example, examine the
fourth entry in SoftReqs.

SoftReqs(4)

ans = 

  Margins with properties:

        Location: {2x1 cell}
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      GainMargin: 7.6000

     PhaseMargin: 45

    ScalingOrder: 0

           Focus: [0 Inf]

          Models: NaN

        Openings: {0x1 cell}

            Name: 'Margins at plant inputs'

The last entry in SoftReqs is a similar TuningGoal.Margins requirement
constraining the margins at the plant outputs. looptune enforces these margins as soft
requirements. If you want to convert them to hard constraints, pass them to systune in
the input vector HardReqs instead of the input vector SoftReqs.

Input Arguments

looptuneInputs — Control system and requirements configured for tuning with looptune
valid looptune input sequence

Control system and requirements configured for tuning with looptune, specified as a
valid looptune input sequence. For more information about the arguments in a valid
looptune input sequence, see the looptune reference page.

Output Arguments

st0 — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, returned as an slTuner
interface. st0 is identical to the slTuner interface you use as input to looptuneSetup.

SoftReqs — Soft tuning requirements
vector of TuningGoal requirement objects

Soft tuning requirements for tuning with systune, returned as a vector of TuningGoal
requirement objects.

looptune expresses most of its implicit tuning requirements as soft tuning
requirements. For example, a specified target loop bandwidth is expressed as a
TuningGoal.LoopShape requirement with integral gain profile and crossover at the
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target frequency. Additionally, looptune treats all of the explicit requirements you
specify (Req1,...ReqN) as soft requirements. SoftReqs contains all of these tuning
requirements.

HardReqs — Hard tuning requirements
vector of TuningGoal requirement objects

Hard tuning requirements (constraints) for tuning with systune, returned as a vector of
TuningGoal requirement objects.

Because looptune treats most tuning requirements as soft requirements, HardReqs
is usually empty. However, if you change the default MaxFrequency option of
the looptuneOptions set, loopopt, then this requirement appears as a hard
TuningGoal.Poles constraint.

sysopt — Algorithm options for systune tuning
systuneOptions options set

Algorithm options for systune tuning, returned as a systuneOptions options set.

Some of the options in the looptuneOptions set, loopopt, are converted into hard or
soft requirements that are returned in HardReqs and SoftReqs. Other options correspond
to options in the systuneOptions set.

See Also
looptune | looptuneOptions | looptuneSetup (for genss) | slTuner |
systune | systuneOptions
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loopview

Graphically analyze results of control system tuning using slTuner interface

Syntax

loopview(st,controls,measurements)

loopview(st,info)

Description

loopview(st,controls,measurements) plots characteristics of the control system
described by the slTuner interface st. Use loopview to analyze the performance of a
tuned control system you obtain using looptune.

loopview plots:

• The gains of the open-loop frequency response measured at the plant inputs (controls
analysis points) and at plant outputs (measurements analysis points)

• The (largest) gain of the sensitivity and complementary sensitivity functions at the
plant inputs or outputs

This command requires a Robust Control Toolbox license.

loopview(st,info) uses the info structure returned by looptune and also plots the
target and tuned values of tuning constraints imposed on the system. Use this syntax to
assist in troubleshooting when tuning fails to meet all requirements.

Additional plots with this syntax include:

• Normalized multi-loop disk margins (see loopmargin) at the plant inputs and
outputs

• Target vs. achieved response for any additional tuning goal you used with looptune
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Examples

Graphically Analyze Results of Control System Tuning

Tune the Simulink model, rct_engine_speed, to achieve a specified settling time. Use
loopview to graphically analyze the tuning results.

Create an slTuner interface for the model and specify the PID Controller block to be
tuned.

open_system('rct_engine_speed')

st0 = slTuner('rct_engine_speed','PID Controller');

Specify a requirement to achieve a 2 second settling time for the Speed signal when
tracking the reference signal.

req = TuningGoal.Tracking('Ref','Speed',2);

Tune the PID Controller block.

addPoint(st0,'u')

control = 'u';

measurement = 'Speed';

wc = 1;

[st1,gam,info] = looptune(st0,control,measurement,wc);

View the response of the model for the tuned block values.
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loopview(st1,control,measurement);

Compare the performance of the tuned block against the tuning goals.

figure;

loopview(st1,info);
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• “Decoupling Controller for a Distillation Column”
• “Tuning of a Two-Loop Autopilot”
• “Managing Signals in Control System Analysis and Design”

Input Arguments

st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.
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controls — Controller output
string | cell array of strings

Controller output name, specified as one of the following:

• String — Name of an analysis point of st.

You can specify the full name or any portion of the name that uniquely identifies the
analysis point among the other analysis points of st.

For example, 'u'.
• Cell array of strings — Multiple analysis point names.

For example, {'u','y'}.

measurements — Measurement
string | cell array of strings

Measurement signal name, specified as one of the following:

• String — Name of an analysis point of st.

You can specify the full name or any portion of the name that uniquely identifies the
analysis point among the other analysis points of st.

For example, 'u'.
• Cell array of strings — Multiple analysis point names.

For example, {'u','y'}.

info — Detailed information about each optimization run
structure

Detailed information about each optimization run, specified as the structure returned by
looptune.

Alternative Functionality

For analyzing Control System Toolbox models tuned with looptune, use loopview.
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See Also
looptune | loopview | slTuner
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removeBlock
Remove block from list of tuned blocks in slTuner interface

Syntax

removeBlock(st,blk)

Description

removeBlock(st,blk) removes the specified block from the list of tuned blocks for the
slTuner interface, st. You can specify blk to remove either a single or multiple blocks.

removeBlock does not modify the Simulink model associated with st.

Examples

Remove Block From List of Tuned Blocks of slTuner Interface

Create an slTuner interface for the scdcascade model. Add C1 and C2 as tuned blocks
to the interface.
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st = slTuner('scdcascade',{'C1','C2'});

Remove C1 from the list of tuned blocks of st.

removeBlock(st,'C1');

Input Arguments

st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.

blk — Block
string | cell array of strings | positive integer | vector of positive integers

Block to remove from the list of tuned blocks for st, specified as one of the following:

• String — Full block path or any portion of the block path that uniquely identifies the
block among the other tuned blocks of st. For example, blk = 'scdcascade/C1'.

• Cell array of strings — Specifies multiple blocks. For example, blk = {'C1','C2'}.
• Positive integer — Block index. For example, blk = 1.
• Vector of positive integers — Specifies multiple block indices. For example, blk = [1

2].

To determine the name or index associated with a tuned block, type st. The software
displays the contents of st in the MATLAB command window, including the tuned block
names.

More About

Tuned Blocks

Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose
parameters are to be tuned to satisfy tuning goals. You can tune most Simulink blocks
that represent linear elements such as gains, transfer functions, or state-space models.
(For the complete list of blocks that support tuning, see “How Tuned Simulink Blocks
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Are Parameterized”.) You can also tune more complex blocks such as SubSystem or S-
Function blocks by specifying an equivalent “tunable linear model”.

Use commands such as systune and looptune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner
interface:

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock. Use
commands such as setBlockParam, getBlockValue, and writeBlockValue to
interact with and manipulate tuned blocks.

See Also
addBlock | addOpening | addPoint | slTuner
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setBlockParam
Set parameterization of tuned block in slTuner interface

Syntax

setBlockParam(st,blk,tunable_mdl)

setBlockParam(st,blk)

setBlockParam(st)

Description

setBlockParam(st,blk,tunable_mdl) assigns a tunable model as the
parameterization of the specified block of the slTuner interface, st.

The parameterization of a block specifies which parameters are tuned by tuning
commands such as systune. Use setBlockParam to override the default
parameterization for a tuned block. You can specify the parameterization for non-atomic
components, such as the Subsystem and S-Function blocks.

After tuning a block, you generally update the value of its corresponding block in the
Simulink model using writeBlockValue. writeBlockValue skips blocks that cannot
represent their tuned value in a straightforward and lossless manner. For example,
suppose you tune an user defined Subsystem or S-Function block. writeBlockValue
will skip this block because there is no clear way to map the tuned value to a Subsystem
or S-Function block. Similarly, if you parameterize a Gain block as a second-order
transfer function, writeBlockValue will skip this block, unless the transfer function
value is a static gain.

setBlockParam(st,blk) reverts to the default parameterization for the block
referenced by blk. The block parameterizations are initialized with the current block
values in Simulink.

For this syntax, you can specify blk as a string or cell array of strings.

setBlockParam(st) reverts to the default parameterization and current block value for
all the tuned blocks of st.
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For this syntax, you can specify blk as a string or cell array of strings.

Examples

Set Parameterization of Tuned Block

Create an slTuner interface for the scdcascade model, and override the default
parameterization for one of the tuned blocks.

Create an slTuner interface.

open_system('scdcascade');

st = slTuner('scdcascade',{'C1','C2'});

Both C1 and C2 are PI controllers. Examine the default parameterization of C1.

getBlockParam(st,'C1')

  Parametric continuous-time PID controller "C1" with formula:

             1 

  Kp + Ki * ---

             s 

  and tunable parameters Kp, Ki.

Type "pid(ans)" to see the current value and "get(ans)" to see all properties.

The default parameterization is a tunable PI controller (ltiblock.pid).

Suppose you want to parameterize C1 as a proportional controller, with only one tunable
parameter, Kp.

G = ltiblock.gain('C1',4.2);

setBlockParam(st,'C1',G);

Tuning commands such as systune now use this proportional controller
parameterization of the C1 block of st.
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This custom parameterization is compatible with the default parameterization of the
Simulink block. Therefore, you can use writeBlockValue to write the tuned values
back to the block.

Input Arguments

st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.

blk — Block
string

Block in the list of tuned blocks for st, specified as a string.

You can specify the full block path or any portion of the block path that uniquely
identifies the block among the other tuned blocks of st.

For example, blk = 'scdcascade/C1' or blk = 'C1'.

tunable_mdl — Block parameterization
control design block | generalized state-space model

Block parameterization, specified as either a tunable “Control Design Block” or genss
model.

More About

Tuned Blocks

Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose
parameters are to be tuned to satisfy tuning goals. You can tune most Simulink blocks
that represent linear elements such as gains, transfer functions, or state-space models.
(For the complete list of blocks that support tuning, see “How Tuned Simulink Blocks
Are Parameterized”.) You can also tune more complex blocks such as SubSystem or S-
Function blocks by specifying an equivalent “tunable linear model”.
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Use commands such as systune and looptune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner
interface:

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock. Use
commands such as setBlockParam, getBlockValue, and writeBlockValue to
interact with and manipulate tuned blocks.
• “How Tuned Simulink Blocks Are Parameterized”

See Also
genss | getBlockParam | getBlockValue | slTuner | systune |
writeBlockValue
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setBlockRateConversion
Set rate conversion settings for tuned block in slTuner interface

Syntax

setBlockRateConversion(st,blk,method)

setBlockRateConversion(st,blk,'tustin',pwf)

Description

setBlockRateConversion(st,blk,method) sets the rate conversion method of a
tuned block in the slTuner interface, st.

Tuning is performed at the sampling rate specified by the Ts property of the slTuner
interface. When you use writeBlockValue to write tuned parameters back to the
Simulink model, each tuned block value is automatically converted from the sample, Ts,
to the sample time of the Simulink block. The rate conversion method associated with
each tuned block specifies how this resampling operation is performed.

setBlockRateConversion(st,blk,'tustin',pwf) sets the Tustin method as the
rate conversion method for blk, with pwf as the prewarp frequency.

Examples

Set Rate Conversion Settings of Tuned Block

Create an slTuner interface for the Simulink model, scdcascade, and set the block
rate conversion settings of one of the tuned blocks.

Create an slTuner interface, and examine the block rate conversion settings for the C1
block.

open_system('scdcascade');

st = slTuner('scdcascade',{'C1','C2'});
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[method,pwf] = getBlockRateConversion(st,'C1')

method =

tustin

pwf =

     0

Set the block rate conversion method for C1 to zero-order hold.

setBlockRateConversion(st,'C1','zoh');

• “Tuning of a Digital Motion Control System”

Input Arguments

st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.

blk — Block
string

Block in the list of tuned blocks for st, specified as a string.

You can specify the full block path or any portion of the block path that uniquely
identifies the block among the other tuned blocks of st.

For example, blk = 'scdcascade/C1' or blk = 'C1'.

method — Rate conversion method
'zoh' | 'foh' | 'tustin' | 'matched'

Rate conversion method associated with blk, specified as one of the following strings:

• 'zoh' — Zero-order hold on the inputs.
• 'foh' — Linear interpolation of inputs.
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• 'tustin' — Bilinear (Tustin) approximation. Optionally, specify a prewarp
frequency with the pwf argument for better frequency-domain matching between the
original and rate-converted dynamics near the prewarp frequency.

• 'matched' — Matched pole-zero method. This method is available for SISO blocks
only.

pwf — Prewarp frequency for Tustin method
positive scalar

Prewarp frequency for the Tustin method, specified as a positive scalar.

More About

Tuned Block

Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose
parameters are to be tuned to satisfy tuning goals. You can tune most Simulink blocks
that represent linear elements such as gains, transfer functions, or state-space models.
(For the complete list of blocks that support tuning, see “How Tuned Simulink Blocks
Are Parameterized”.) You can also tune more complex blocks such as SubSystem or S-
Function blocks by specifying an equivalent “tunable linear model”.

Use commands such as systune and looptune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner
interface:

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock. Use
commands such as setBlockParam, getBlockValue, and writeBlockValue to
interact with and manipulate tuned blocks.
• “Continuous-Discrete Conversion Methods”

See Also
setBlockRateConversion | slTuner | writeBlockValue
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setBlockValue
Set value of tuned block parameterization in slTuner interface

Syntax

setBlockValue(st,blk,val)

setBlockValue(st,elem,val)

setBlockValue(st,m)

setBlockValue(st,blk_val_struc)

Description

setBlockValue(st,blk,val) sets the current value of the parameterization of a
tunable block in an slTuner interface.

The slTuner interface associates a parametric model with each Simulink model listed
in the TunedBlocks property of st. This parameterization expresses each tunable block
as a “Control Design Block” or a tunable genss model. The parameterization specifies
which parameters are tuned by commands such as systune.

You can use setBlockValue to initialize the tunable parameters of blocks
parameterized by Control Design Blocks before tuning st with a tuning command such as
systune or looptune.

setBlockValue(st,elem,val) sets the current value of a particular tunable element
of a custom parameterization of a tunable block in an slTuner interface. If you use
setBlockParam to assign a custom genss model parameterization of a tuned block, this
syntax lets you set the value of a particular tunable element of the genss model.

setBlockValue(st,m) updates the current values of the tunable parameters in
st to match the corresponding values of tunable parameters in the “Generalized LTI
Model” model, m. Only parameters common to st and m are updated. Use this syntax to
update st after obtaining m by tuning with commands such as systune, looptune, or
hinfstruct.
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setBlockValue(st,blk_val_struc) updates the value of multiple blocks using the
structure, blk_val_struc. Only blocks common to st and blk_val_struc are updated. Use
this syntax to update st after obtaining blk_val_struc by tuning with commands such as
systune, looptune, or hinfstruct. blk_val_struc corresponds to the Blocks property
value of the generalized state-space model returned by such commands.

Examples

Set Value of Tuned Block Parameterization

Create an slTuner interface for the scdcascade model, and set the value of the
parametrization of one of the tuned blocks.

Create an slTuner interface.

open_system('scdcascade');

st = slTuner('scdcascade',{'C1','C2'});

Both C1 and C2 are PI controllers. Examine the default parameterization of C1.

getBlockParam(st,'C1')

  Parametric continuous-time PID controller "C1" with formula:

             1 

  Kp + Ki * ---

             s 

  and tunable parameters Kp, Ki.

Type "pid(ans)" to see the current value and "get(ans)" to see all properties.

The default parameterization is a PI controller with two tunable parameters, Kp and Ki.

Set the value of the parameterization of C1.

C = pid(4.2);

setBlockValue(st,'C1',C);

Examine the value of the parameterization of C1.

getBlockValue(st,'C1')
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  Kp = 4.2

 

Name: C1

P-only controller.

Examine the parameterization of C1.

getBlockParam(st,'C1')

  Parametric continuous-time PID controller "C1" with formula:

             1 

  Kp + Ki * ---

             s 

  and tunable parameters Kp, Ki.

Type "pid(ans)" to see the current value and "get(ans)" to see all properties.

Observe that although the current block value is a P-only controller, the block
parameterization continues to be a PI-controller.

Set Value of Tuned Block Parameterization Using Generalized State-Space Model

This example shows how to convert an slTuner interface for the Simulink model
rct_diskdrive to a genss model. Perform this conversion to tune the model blocks
using hinfstruct (requires Robust Control Toolbox). After validating the tuning
results, you can update the slTuner interface with the tuned parameters returned by
hinfstruct. Then, you can use the slTuner interface to write the tuned parameter
values to the Simulink model.

This example requires Robust Control Toolbox.

Create an slTuner interface for rct_diskdrive. Add C and F as tuned blocks of the
interface.

open_system('rct_diskdrive');

st = slTuner('rct_diskdrive',{'C','F'});

The default parameterization of the transfer function block, F, is a transfer function with
two free parameters. Because F is a low-pass filter, you must constrain its coefficients. To
do so, specify a custom parameterization of F.

a = realp('a',1);    % filter coefficient



6 Alphabetical List

6-314

setBlockParam(st,'F',tf(a,[1 a]));

Suppose you want to tune the closed-loop transfer function using hinfstruct, which
operates only on genss models. Convert st to a genss model.

t0 = genss(st);

t0 = getIOTransfer(t0,{'r','n'},{'y','e'});

t0 contains the linearized closed-loop transfer function from the reference noise inputs, r
and n, to the measurement and error outputs, y and e. The error output is needed for the
loop-shaping weighting function.

Define the loop-shaping weighting functions and append them to t0.

wc = 1000;

s = tf('s');

ls = (1+0.001*s/wc)/(0.001+s/wc);

t0 = blkdiag(1,ls)*t0*blkdiag(1,1/ls);

t0 is a weighted closed-loop model of the control system of rct_diskdrive.

You can now use hinfstruct to tune the parameters of t0.

t = hinfstruct(t0);

After validating the tuning result, suppose you want to update the Simulink model with
the tuned values.

setBlockValue(st,t);

writeBlockValue(st);

You can also use the command setBlockValue(st,t.Blocks) to update the block
parameterization values in st.

Set Value of Single Tunable Element within Custom Parameterization

Create an slTuner interface for the scdcascade model. Set a custom parameterization
of one of the tunable blocks.

open_system('scdcascade');

st = slTuner('scdcascade',{'C1','C2'});

C1CustParam = realp('Kp',1) + tf(1,[1 0]) * realp('Ki',1);

setBlockParam(st,'C1',C1CustParam);
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These commands set the parameterization of the C1 controller block to a generalized
state-space (genss) model containing two tunable parameters, 'Ki' and 'Kp'..

Initialize the value of Ki to 10, without changing the current value of 'Kp'

setBlockValue(st,'Ki',10);

• “Fixed-Structure Autopilot for a Passenger Jet”

Input Arguments

st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.

blk — Block
string

Block in the list of tuned blocks for st, specified as a string.

You can specify the full block path or any portion of the block path that uniquely
identifies the block among the other tuned blocks of st.

For example, blk = 'scdcascade/C1' or blk = 'C1'.

elem — Tunable element of custom parameterization
string

Tunable element of a custom parameterization of a tuned block, specified as a string.
If you use setBlockParam to assign a custom genss model parameterization of a
tuned block, elem can be any of the tunable elements of the genss parameterization.
For example, suppose you set the parameterization of a tuned block in st to Kp + Ki*
tf(1,[1 0]), where Kp and Ki are realp tunable parameters with names 'Kp' and
'Ki'. In that case you can set elem to 'Kp' or 'Ki' to set the current value of each
parameter.

val — Block parameterization value
control design block | numeric LTI model | numeric scalar or array



6 Alphabetical List

6-316

Parameterization value, specified as a “control design block”, a “numeric LTI model”, or a
numeric value.

val can be any model or value that is compatible with the parameterization of the block
or element whose value you are setting. For example, suppose you are setting the value
of a block that is parameterized as an ltiblock.pid. You can specify val as one of the
following models: ltiblock.pid, numeric pid, numeric tf model representing a PID
controller. Alternatively, if you are setting the value of a scalar tunable parameter in a
custom parameterization, val must be a scalar.

setBlockValue updates the value of the parameters of the tuned block based on
the parameters of val. Using setBlockValue does not change the structure of the
parameterization of the tuned block. To change the parameterization of blk, use
setBlockParam. For example, you can use setBlockParam to change a block
parameterization from ltiblock.pid to a three-pole ltiblock.tf model.

m — Tuned model
generalized LTI model

Tuned model that has some parameters in common with st, specified as a “Generalized
LTI Model”.

blk_val_struc — Parameterization value of multiple blocks
structure

Parameterization value of multiple blocks, specified as a structure.

See Also
getBlockParam | getBlockValue | setBlockParam | slTuner | writeBlockValue
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showTunable
Show value of parameterizations of tunable blocks of slTuner interface

Syntax
showTunable(st)

Description
showTunable(st) displays the values of the parameteric models associated with each
tunable block in the slTuner interface, st.

Examples
Display Tunable Block Values

Create an slTuner interface for the scdcascade model, and add C1 and C2 as tuned
blocks of the interface.

st = slTuner('scdcascade',{'C1','C2'});

Display the default values of the tuned blocks.
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showTunable(st);

Block 1: scdcascade/C1 =

 

             1 

  Kp + Ki * ---

             s 

  with Kp = 0.158, Ki = 0.042

 

Name: C1

Continuous-time PI controller in parallel form.

-----------------------------------

Block 2: scdcascade/C2 =

 

             1 

  Kp + Ki * ---

             s 

  with Kp = 1.48, Ki = 4.76

 

Name: C2

Continuous-time PI controller in parallel form.

Input Arguments

st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.

More About

Tuned Blocks

Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose
parameters are to be tuned to satisfy tuning goals. You can tune most Simulink blocks
that represent linear elements such as gains, transfer functions, or state-space models.
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(For the complete list of blocks that support tuning, see “How Tuned Simulink Blocks
Are Parameterized”.) You can also tune more complex blocks such as SubSystem or S-
Function blocks by specifying an equivalent “tunable linear model”.

Use commands such as systune and looptune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner
interface:

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock. Use
commands such as setBlockParam, getBlockValue, and writeBlockValue to
interact with and manipulate tuned blocks.

See Also
getBlockValue | setBlockValue | slTuner | writeBlockValue
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slTunable
Interface for control system tuning of Simulink models

Note: slTunable has been removed. Use slTuner instead.
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systune

Tune control system parameters in Simulink using slTuner interface

Syntax

[st,fSoft] = systune(st0,SoftGoals)

[st,fSoft,gHard] = systune(st0,SoftGoals,HardGoals)

[st,fSoft,gHard] = systune( ___ ,opt)

[st,fSoft,gHard,info] = systune( ___ )

Description

[st,fSoft] = systune(st0,SoftGoals) tunes the free parameters of the
control system in Simulink. The Simulink model, tuned blocks, and analysis points of
interest are specified by the slTuner interface, st0. systune tunes the control system
parameters to best meet the performance goals, SoftGoals. The command returns a tuned
version of st0 as st, and the best achieved values as fSoft for the objectives, SoftGoals.

Tuning is performed at the sample time specified by the Ts property of st0.

This command requires a Robust Control Toolbox license.

[st,fSoft,gHard] = systune(st0,SoftGoals,HardGoals) tunes the control
system to best meet the soft goals, subject to satisfying the hard goals. It returns the
best achieved values, fSoft and gHard, for the soft and hard goals. A goal is met when its
achieved value is less than 1.

[st,fSoft,gHard] = systune( ___ ,opt) specifies options for the optimization for
any of the input argument combinations in previous syntaxes.

[st,fSoft,gHard,info] = systune( ___ ) also returns detailed information about
each optimization run for any of the input argument combinations in previous syntaxes.
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Examples

Tune Control System to Soft Constraints

Tune the control system in the rct_airframe2 model to soft goals for tracking, roll off,
stability margin, and disturbance rejection.

Create and configure an slTuner interface to the model.

open_system('rct_airframe2')

st0 = slTuner('rct_airframe2','MIMO Controller');

st0 is an slTuner interface to the rct_aircraft2 model with the MIMO Controller
block specified as the tunable portion of the control system.

The model already has linearization input points on the signals az ref, delta fin, az,
q, and e. These signals are therefore available as analysis points for tuning goals and
linearization.

Specify the tracking requirement, roll-off requirement, stability margins, and
disturbance rejection requirement.

req1 = TuningGoal.Tracking('az ref','az',1);                 

req2 = TuningGoal.Gain('delta fin','delta fin',tf(25,[1 0])); 

req3 = TuningGoal.Margins('delta fin',7,45);                  

max_gain = frd([2 200 200],[0.02 2 200]);
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req4 = TuningGoal.Gain('delta fin','az',max_gain);  

req1 constrains az to track az ref. The next requirement, req2, imposes a roll-off
requirement by specifying a gain profile for the open-loop, point-to-point transfer function
measured at delta fin. The next requirement, req3, imposes open-loop gain and phase
margins on that same point-to-point transfer function. Finally, req4 rejects disturbances
to az injected at delta fin, by specifying a maximum gain profile between those two
points.

Tune the model using these tuning goals.

opt = systuneOptions('RandomStart',3);

rng(0);

[st,fSoft,~,info] = systune(st0,[req1,req2,req3,req4],opt);

Final: Soft = 1.15, Hard = -Inf, Iterations = 72

Final: Soft = 1.53, Hard = -Inf, Iterations = 86

Final: Soft = 1.15, Hard = -Inf, Iterations = 89

Final: Failed to enforce closed-loop stability (max Re(s) = 0)

st is a tuned version of st0.

The RandomStart option specifies that systune must perform three independent
optimization runs that use different (random) initial values of the tunable parameters.
These three runs are in addition to the default optimization run that uses the current
value of the tunable parameters as the initial value. The call to rng seeds the random
number generator to produce a repeatable sequence of numbers.

systune displays the final result for each run. The displayed value, Soft, is the
maximum of the values achieved for each of the four performance goals. The software
chooses the best run overall, which is the run yielding the lowest value of Soft. The last
run fails to achieve closed-loop stability, which corresponds to Soft = Inf.

Examine the best achieved values of the soft constraints.

fSoft

fSoft =

    1.1460    1.1460    0.5434    1.1460

Only req3, the stability margin requirement, is met for all frequencies. The other values
are close to, but exceed, 1, indicating violations of the goals for at least some frequencies.
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Use viewSpec to visualize the tuned control system performance against the goals and
to determine whether the violations are acceptable. To evaluate specific open-loop or
closed-loop transfer functions for the tuned parameter values, you can use linearization
commands such as getIOTransfer and getLoopTransfer. After validating the tuned
parameter values, if you want to apply these values to the Simulink model, you can use
writeBlockValue.

• “Tuning Control Systems in Simulink”
• “Control of a Linear Electric Actuator”
• “Validating Results”

Input Arguments

st0 — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.

SoftGoals — Soft goals (objectives)
vector of TuningGoal objects

Soft goals (objectives) for tuning the control system described by st0, specified as a vector
of TuningGoal objects. For a complete list, see “Tuning Goals”.

systune tunes the tunable parameters of the control system to minimize the maximum
value of the soft tuning goals, subject to satisfying the hard tuning goals (if any).

HardGoals — Hard goals (constraints)
vector of TuningGoal objects

Hard goals (constraints) for tuning the control system described by st0, specified as a
vector of TuningGoal objects. For a complete list, see “Tuning Goals”.

A hard goal is satisfied when its value is less than 1. systune tunes the tunable
parameters of the control system to minimize the maximum value of the soft tuning
goals, subject to satisfying all the hard tuning goals.

opt — Tuning algorithm options
options set created using systuneOptions
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Tuning algorithm options, specified as an options set created using systuneOptions.

Available options include:

• Number of additional optimizations to run starting from random initial values of the
free parameters

• Tolerance for terminating the optimization
• Flag for using parallel processing

Output Arguments

st — Tuned interface
slTuner interface

Tuned interface, returned as an slTuner interface.

fSoft — Best achieved values of soft goals
vector

Best achieved values of soft goals, returned as a vector.

Each tuning goal evaluates to a scalar value, and systune minimizes the maximum
value of the soft goals, subject to satisfying all the hard goals.

fSoft contains the value of each soft goal for the best overall run. The best overall run is
the run that achieved the smallest value for max(fSoft), subject to max(gHard)<1.

gHard — Achieved values of hard goals
vector

Achieved values of hard goals, returned as a vector.

gHard contains the value of each hard goal for the best overall run (the run that achieved
the smallest value for max(fSoft), subject to max(gHard)<1. All entries of gHard
are less than 1 when all hard goals are satisfied. Entries greater than 1 indicate that
systune could not satisfy one or more design constraints.

info — Detailed information about each optimization run
structure

Detailed information about each optimization run, returned as a structure.
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In addition to examining detailed results of the optimization, you can use info as an input
to viewSpec when validating a tuned MIMO system. info contains scaling data that
viewSpec needs for correct evaluation of MIMO open-loop goals, such as loop shapes and
stability margins.

The fields of info are:

Run — Run number
scalar

Run number, returned as a scalar. If you use the RandomStart option of
systuneOptions to perform multiple optimization runs, info is a struct array, and
info.Run is the index.

Iterations — Total number of iterations performed during run
scalar

Total number of iterations performed during run, returned as a scalar.

fBest — Best overall soft constraint value
scalar

Best overall soft constraint value, returned as a scalar. systune converts the soft
goals to a function of the free parameters of the control system. The command then
tunes the parameters to minimize that function subject to the hard constraints. (See
“Algorithms” on page 6-329.) info.fBest is the maximum soft constraint value at the
final iteration. This value is only meaningful when the hard constraints are satisfied.

gBest — Best overall hard constraint value
scalar

Best overall hard constraint value, returned as a scalar. systune converts the hard
goals to a function of the free parameters of the control system. The command then
tunes the parameters to drive those values below 1. (See “Algorithms” on page 6-329.)
info.gBest is the maximum hard constraint value at the final iteration. This value
must be less than 1 for the hard constraints to be satisfied.

fSoft — Individual soft constraint values
vector

Individual soft constraint values, returned as a vector. systune converts each soft
requirement to a normalized value that is a function of the free parameters of the control
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system. The command then tunes the parameters to minimize that value subject to
the hard constraints. (See “Algorithms” on page 6-329.) info.fSoft contains the
individual values of the soft constraints at the end of each run. These values appear in
fSoft in the same order that the constraints are specified in SoftGoals.

gHard — Individual hard constraint values
vector

Individual hard constraint values, returned as a vector. systune converts each hard
requirement to a normalized value that is a function of the free parameters of the control
system. The command then tunes the parameters to minimize those values. A hard
requirement is satisfied if its value is less than 1. (See “Algorithms” on page 6-329.)
info.gHard contains the individual values of the hard constraints at the end of each
run. These values appear in gHard in the same order that the constraints are specified in
HardGoals.

MinDecay — Minimum decay rate of closed-loop poles
vector

Minimum decay rate of closed-loop poles, returned as a vector.

By default, closed-loop pole locations of the tuned system are constrained to satisfy Re(p)
< –10–7. Use the MinDecay option of systuneOptions to change this constraint.

Blocks — Tuned values of tunable blocks and parameters
structure

Tuned values of tunable blocks and parameters, returned as a structure.

In case of multiple runs, you can try the results of any particular run other than the
best run. To do so, you can use either getBlockValue or showTunable to access
the tuned parameter values. For example, to use the results from the third run, type
getBlockValue(st,Info(3).Blocks).

LoopScaling — Optimal diagonal scaling for evaluating MIMO tuning goals
state-space model

Optimal diagonal scaling for evaluating MIMO tuning goals, returned as a state-space
model.

When applied to multiloop control systems, TuningGoal.LoopShape and
TuningGoal.Margins goals can be sensitive to the scaling of the individual loop
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transfer functions to which they apply. systune automatically corrects scaling
issues and returns the optimal diagonal scaling matrix d as a state-space model in
info.LoopScaling.

The loop channels associated with each diagonal entry of D are listed in
info.LoopScaling.InputName. The scaled loop transfer is D\L*D, where L is the
open-loop transfer measured at the locations info.LoopScaling.InputName.

More About

Tuned Blocks

Tuned blocks, used by the slTuner interface, identify blocks in a Simulink model whose
parameters are to be tuned to satisfy tuning goals. You can tune most Simulink blocks
that represent linear elements such as gains, transfer functions, or state-space models.
(For the complete list of blocks that support tuning, see “How Tuned Simulink Blocks
Are Parameterized”.) You can also tune more complex blocks such as SubSystem or S-
Function blocks by specifying an equivalent “tunable linear model”.

Use commands such as systune and looptune to tune the parameters of tuned blocks.

You must specify tuned blocks (for example, C1 and C2) when you create an slTuner
interface:

st = slTuner('scdcascade',{'C1','C2'})

You can modify the list of tuned blocks using addBlock and removeBlock. Use
commands such as setBlockParam, getBlockValue, and writeBlockValue to
interact with and manipulate tuned blocks.

Analysis Points

Analysis points, used by the slLinearizer and slTuner interfaces, identify locations
within a model that are relevant for linear analysis and control system tuning. You
use analysis points as inputs to the linearization commands, such as getIOTransfer,
getLoopTransfer, getSensitivity, and getCompSensitivity. As inputs to the
linearization commands, analysis points can specify any open- or closed-loop transfer
function in a model. You can also use analysis points to specify design requirements
when tuning control systems using commands such as systune (requires a Robust
Control Toolbox license).
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Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an analysis point.

You can add analysis points to an slLinearizer or slTuner interface, s, when you
create the interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

Alternatively, you can use the addPoint command.

To view all the analysis points of s, type s at the command prompt to display the
interface contents. For each analysis point of s, the display includes the block name and
port number and the name of the signal that originates at this point. You can also use
getPoints to programmatically obtain a list of all the analysis points.

For more information about how you can use analysis points, see “Managing Signals in
Control System Analysis and Design”.

Algorithms

x is the vector of tunable parameters in the control system to tune. systune converts
each soft and hard tuning requirement, SoftReqs(i) and HardReqs(j), into
normalized values fi(x) and gj(x), respectively. systune then solves the minimization
problem:

Minimize max

i
if x( )  subject to max

j
jg x( ) < 1 , for x x x

min max
< < .

xmin and xmax are the minimum and maximum values of the free parameters.

systune returns a control system, st, with parameters tuned to the values that best
solve the minimization problem. systune also returns the best achieved values of fi(x)
and gj(x), as fSoft and gHard.

For information about the functions fi(x) and gj(x) for each type of constraint, see the
reference pages for each TuningGoal requirement object.

For information about the optimization algorithms, see [1].

systune computes the H∞ norm using the algorithm of [2] and structure-preserving
eigensolvers from the SLICOT library. For information about the SLICOT library, see
http://slicot.org.

http://slicot.org
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• “Tuning Goals”
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See Also
addPoint | getIOTransfer | getLoopTransfer | hinfstruct | looptune |
slTuner | systune (for genss) | systuneOptions | writeBlockValue
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writeBlockValue
Update block values in Simulink model

Syntax

writeBlockValue(st)

writeBlockValue(st,m)

Description

writeBlockValue(st) writes tuned parameter values from the slTuner interface,
st, to the Simulink model that st describes. Use this command, for example, to validate
parameters of a control system that you tuned using systune or looptune.

writeBlockValue skips blocks that cannot represent their tuned value in a
straightforward and lossless manner. For example, suppose you tune an user defined
Subsystem or S-Function block. writeBlockValue will skip this block because there is
no clear way to map the tuned value to a Subsystem or S-Function block. Similarly, if you
parameterize a Gain block as a second-order transfer function, writeBlockValue will
skip this block, unless the transfer function value is a static gain.

writeBlockValue(st,m) writes tuned parameter values from a generalized model, m,
to the Simulink model described by the slTuner interface, st.

Examples

Update Simulink Model with All Tuned Parameters

Create an slTuner interface for the scdcascade model, and tune the parameters of its
controller blocks. Write the tuned parameter values from the slTuner interface to the
Simulink model.

Create an slTuner interface.

st = slTuner('scdcascade',{'C1','C2'});
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Specify the tuning goals and necessary analysis points.

tg1 = TuningGoal.StepTracking('r','y1m',5);

addPoint(st,{'r','y1m'});

tg2 = TuningGoal.Poles();

tg2.MaxFrequency = 10;

Tune the controller.

[sttuned,fSoft] = systune(st,[tg1 tg2]);

After validating the tuning results, update the model to use the tuned controller values.

writeBlockValue(sttuned);

• “Tuning of a Digital Motion Control System”
• “Control of a Linear Electric Actuator”

Input Arguments

st — Interface for tuning control systems modeled in Simulink
slTuner interface

Interface for tuning control systems modeled in Simulink, specified as an slTuner
interface.

m — Tuned control system
generalized state-space

Tuned control system, specified as a generalized state-space model (genss).

Typically, m is the output of a tuning function like systune, looptune, or hinfstruct.
The model m must have some tunable parameters in common with st. For example, m
can be a generalized model that you obtained by linearizing your Simulink model, and
then tuned to meet some design requirements.

More About
• “How Tuned Simulink Blocks Are Parameterized”
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See Also
getBlockValue | setBlockValue | showTunable | slTuner
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slTuner
Interface for control system tuning of Simulink models

Syntax
st = slTuner(mdl,tuned_blocks)

st = slTuner(mdl,tuned_blocks,pt)

st = slTuner(mdl,tuned_blocks,param)

st = slTuner(mdl,tuned_blocks,op)

st = slTuner(mdl,tuned_blocks,blocksub)

st = slTuner(mdl,tuned_blocks,opt)

st = slTuner(mdl,tuned_blocks,pt,op,param,blocksub,opt)

Description
st = slTuner(mdl,tuned_blocks) creates an slTuner interface, st, for tuning the
control system blocks of the Simulink model, mdl. The interface adds the linear analysis
points marked in the model as analysis points of st. The interface additionally adds the
linear analysis points that imply an opening as permanent openings. When the interface
performs linearization, for example, to tune the blocks, it uses the model initial condition
as the operating point.

st = slTuner(mdl,tuned_blocks,pt) adds the specified point to the list of analysis
points for st, ignoring linear analysis points marked in the model.

st = slTuner(mdl,tuned_blocks,param) specifies the parameters whose values
you want to vary when tuning the model blocks.

st = slTuner(mdl,tuned_blocks,op) specifies the operating points for tuning the
model blocks.

st = slTuner(mdl,tuned_blocks,blocksub) specifies substitute linearizations of
blocks and subsystems. Use this syntax, for example, to specify a custom linearization for
a block. You can also use this syntax for blocks that do not linearize successfully, such as
blocks with discontinuities or triggered subsystems.

st = slTuner(mdl,tuned_blocks,opt) configures the linearization algorithm
options.
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st = slTuner(mdl,tuned_blocks,pt,op,param,blocksub,opt) uses any
combination of the input arguments pt, op, param, blocksub, and opt to create st. For
example, you can use:

• st = slTuner(mdl,tuned_blocks,pt,param)

• st = slTuner(mdl,tuned_blocks,op,param).

Object Description

slTuner provides an interface between a Simulink model and the tuning commands
systune and looptune. (Using these tuning commands requires Robust Control
Toolbox software). slTuner allows you to:

• Specify the control architecture.
• Designate and parameterize blocks to be tuned.
• Tune the control system.
• Validate design by computing (linearized) open-loop and closed-loop responses.

Because tuning commands such as systune operate on linear models, the slTuner
interface automatically computes and stores a linearization of your Simulink model. This
linearization is automatically updated when you change any properties of the slTuner
interface. The update occurs when you call commands that query the linearization
stored in the interface. Such commands include systune, looptune, getIOTransfer,
and getLoopTransfer. For more information about linearization, see “What Is
Linearization?”

Examples

Create and Configure slTuner Interface for Control System Tuning

Create an slTuner interface for a Simulink model that specifies which blocks to tune
with systune or looptune. Further configure the interface by adding analysis points for
specifying design goals and extracting system responses.

For this example, create and configure an slTuner interface for tuning the scdcascade
two-loop control system model. Open the model.
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mdl = 'scdcascade';

open_system(mdl);

The control system consists of two feedback loops, an inner loop with PI controller C2,
and an outer loop with PI controller C1. Suppose you want to tune this model to meet the
following control objectives:

• Track setpoint changes to r at the system output y1m with zero steady-state error and
specified rise time.

• Reject the disturbance represented by d2.

The systune command can jointly tune the controller blocks to meet these design
requirements, which you specify using TuningGoal objects. The slTuner interface sets
up this tuning task.

Create the slTuner interface.

st = slTuner(mdl,{'C1','C2'});

This command initializes the slTuner interface and designates the two PI controller
blocks as tunable. Each tunable block is automatically parameterized according to
its type and initialized with its value in the Simulink model. A linearization of the
remaining, nontunable portion of the model is computed and stored in the slTuner
interface.

To configure the slTuner interface, designate as analysis points any signal locations
of relevance to your design requirements. Add the output and reference input for the
tracking requirement. Also, add the disturbance-rejection location.
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addPoint(st,{'r','y1m','d2'});

These locations in your model are now available for referencing in TuningGoal objects
that capture your design goals.

Display a summary of the slTuner interface configuration in the command window.

st

slTuner tuning interface for "scdcascade":

2 Tuned blocks: 

--------------------------

Block 1: scdcascade/C1

Block 2: scdcascade/C2

 

3 Analysis points: 

--------------------------

Point 1: Signal "r", located at port 1 of scdcascade/setpoint

Point 2: Signal "y1m", located at port 1 of scdcascade/Sum

Point 3: Port 1 of scdcascade/d2

 

No permanent openings. Use addOpening to add new permanent openings.

Properties with dot notation get/set access:

      Parameters         : [] 

      OperatingPoints    : [] (model initial condition will be used.)

      BlockSubstitutions : []

      Options            : [1x1 linearize.SlTunerOptions]

      Ts                 : 0

The display lists the designated tunable blocks, analysis points, and other information
about the interface. In the command window, click on any highlighted signal to see
its location in the Simulink model. Note that specifying the block name 'd2' in the
addPoint command is equivalent to designating that block’s single output signal as the
analysis point.

You can now capture your design goals with TuningGoal objects and use systune or
looptune to tune the control system to meet those design goals.

In addition to specifying design goals, you can use analysis points for extracting system
responses. For example, extract and plot the step response between the reference signal
'r' and the output 'y1m'.

T = getIOTransfer(st,'r','y1m');
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stepplot(T)

• “Create and Configure slTuner Interface to Simulink Model”
• “Tuning Control Systems in Simulink”
• “Fault-Tolerant Control of a Passenger Jet”
• “Multi-Loop PID Control of a Robot Arm”

Input Arguments

mdl — Simulink model name
string
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Simulink model name, specified as a string.
Example: 'scdcascade'

tuned_blocks — Blocks to be tuned
string | cell array of strings

Blocks to be added to the list of tuned blocks of st, specified as:

• String — Block path. You can specify the full block path or a partial path. The partial
path must match the end of the full block path and unambiguously identify the block
to add. For example, you can refer to a block by its name, provided the block name
appears only once in the Simulink model.

For example, blk = 'scdcascade/C1'.
• Cell array of strings — Multiple block paths.

For example, blk = {'scdcascade/C1','scdcascade/C2'}.

pt — Analysis point
string | cell array of strings | vector of linearization I/O objects

An analysis point to be added to the list of analysis points for st, specified as:

• String — Analysis point identifier that can be any of the following:

• Signal name, for example pt = 'torque'
• Block path for a block with a single output port, for example pt = 'Motor/PID'
• Block path and port originating the signal, for example pt = 'Engine Model/1'

• Cell array of strings — Specifies multiple analysis point identifiers. For example:

pt = {'torque','Motor/PID','Engine Model/1'}

• Vector of linearization I/O objects — Use linio to create pt. For example:

pt(1) = linio('scdcascade/setpoint',1,'input');

pt(2) = linio('scdcascade/Sum',1,'output');

Here, pt(1) specifies an input, and pt(2) specifies an output.

The interface adds all the points specified by pt and ignores their I/O types. The
interface additionally adds all 'loopbreak' type signals as permanent openings.
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param — Parameter samples for batch linearization of mdl
structure | structure array

Parameter samples for linearizing mdl, specified as:

• Structure — For a single parameter, param must be a structure with the following
fields:

• Name — Parameter name, specified as a string or MATLAB expression
• Value — Parameter sample values, specified as a double array

For example:

param.Name = 'A';

param.Value = linspace(0.9*A,1.1*A,3);

• Structure array — Vary the value of multiple parameters. For example, suppose you
want to vary the value of the A and b model parameters in the 10% range:

[A_grid,b_grid] = ndgrid(linspace(0.9*A,1.1*A,3),...

                           linspace(0.9*b,1.1*b,3));

params(1).Name = 'A';

params(1).Value = A_grid;

params(2).Name = 'b';

params(2).Value = b_grid;

If param specifies tunable parameters only, then the software batch linearizes the model
using a single compilation. If you additionally configure st.OperatingPoints with
operating point objects only, the software uses single model compilation.

op — Operating point for linearizing mdl
operating point object | array of operating point objects | array of positive scalars

Operating point for linearizing mdl, specified as:

• Operating point object, created using findop.

For example:

op = findop('magball',operspec('magball'));

• Array of operating point objects, specifying multiple operating points.

For example:

op = findop('magball',[10 20]);
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• Array of positive scalars, specifying simulation snapshot times.

For example:

op = [1 4.2];

If you configure st.Parameters, then specify op as one of the following:

• Single operating point.
• Array of operating point objects whose size matches that of the parameter grid

specified by the Parameters property. When you batch linearize mdl, the software
uses only one model compilation.

• Multiple snapshot times. When you batch linearize mdl, the software simulates the
model for each snapshot time and parameter grid point combination. This operation
can be computationally expensive.

blocksub — Substitute linearizations for blocks and model subsystems
structure | structure array

Substitute linearizations for blocks and model subsystems. Use blocksub to specify
a custom linearization for a block or subsystem. You also can use blocksub for
blocks that do not have analytic linearizations, such as blocks with discontinuities or
triggered subsystems. Specify multiple substitute linearizations for a block to obtain
a linearization for each substitution (batch linearization). Use this functionality, for
example, to study the effects of varying the linearization of a Saturation block on the
model dynamics.

blocksub is an n-by-1 structure, where n is the number of blocks for which you specify
the linearization. blocksub has these fields:

• Name — Block path corresponding to the block for which you want to specify the
linearization.

blocksub.Name is a string of the form model/subsystem/block that uniquely
identifies a block in the model.

• Value — Desired linearization of the block, specified as one of the following:

• Double, for example 1. Use for SISO models only. For models having either
multiple inputs or multiple outputs, or both, use an array of doubles. For example,
[0 1]. Each array entry specifies a linearization for the corresponding I/O
combination.
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• LTI model, uncertain state-space model (requires Robust Control Toolbox
software), or uncertain real object (requires Robust Control Toolbox software).
Model I/Os must match the I/Os of the block specified by Name. For example,
zpk([],[-10 -20],1).

• Array of LTI models, uncertain state-space models, or uncertain real objects. For
example, [zpk([],[-10 -20],1); zpk([],[-10 -50],1)].

If you vary model parameter values, then the LTI model array size must match the
grid size.

• Structure, with the following fields (for information about each field, click the field
name)

• Specification

Block linearization, specified as a string. The string can include a MATLAB
expression or function that returns one of the following:

• Linear model in the form of a D-matrix
• Control System Toolbox LTI model object
• Robust Control Toolbox uncertain state space or uncertain real object

(requires Robust Control Toolbox software)

If blocksub.Value.Specification is a MATLAB expression, this
expression must follow the resolution rules , as described in “Symbol
Resolution”.

If blocksub.Value.Specification is a function, this function must have
one input argument, BlockData, which is a structure that the software creates
automatically and passes to the specification function. BlockData has the
following fields:

• BlockName is the name of the Simulink block with the specified
linearization.

• Parameters is a structure array containing the evaluated values for the
block. Each element of the array has the fields 'Name' and 'Value', which
contain the name and evaluated value, respectively, for the parameter.

• Inputs is a structure that has the following fields:
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• BlockName — Contains the name of the block whose output connects
to the input of the block whose linearization you are specifying. For
example, if you specify the linearization of a block called Dynamics, and
the second input of Dynamics is driven by a signal from a block called
Torque, then BlockData.Inputs(2).BlockName is the full block path
name of Torque.

• PortIndex — Identifies which output port of BlockName corresponds
to the input of the block whose linearization you are specifying. For
example, if the third output from Torque drives the second input of
Dynamics, then BlockData.Inputs(2).PortIndex = 3.

• Values — The value of the signal specified by BlockName and
PortIndex. If this signal is a vector-valued signal, Values is a vector of
corresponding dimension.

• ny is the number of output channels of the block linearization.
• nu is the number of input channels of the block linearization.

• Type

Specification type, specified as one of these strings:
'Expression'

'Function'

• ParameterNames

Linearization function parameter names, specified as a comma-separated list of
strings. Specify only when blocksub.Value.Type = 'Function' and your
block linearization function requires input parameters. These parameters only
impact the linearization of the specified block

You also must specify the corresponding blocksub.Value.ParameterValues
field.

• ParameterValues

Linearization function parameter values that correspond to
blocksub.Values.ParameterNames. Specify only when
blocksub.Value.Type = 'Function'.
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blocksub.Value.ParameterValues is a comma separated list of values. The
order of parameter values must correspond to the order of parameter names in
blocksub.Value.ParameterNames.

BlockLinearization is a state-space (ss) model that is the current default
linearization of the block. You can use BlockData.BlockLinearization in
the specification function to specify a block linearization that depends on the
default linearization, such as the default linearization multiplied by a time
delay.

opt — Linearization algorithm options
options set created using linearizeOptions

Linearization algorithm options, specified as an options set created using
linearizeOptions.

Example: opt =
linearizeOptions('LinearizationAlgorithm','numericalpert')

Properties
slTuner objects properties include:

TunedBlocks

Blocks to be tuned in mdl, specified as a cell array of strings.

When you create an slTuner interface, the TunedBlocks property is automatically
populated with the blocks you specify in the tuned_blocks input argument. To specify
additional tunable blocks in an existing an existing slTuner interface, use addBlock.

Ts

Sampling time for analyzing and tuning mdl, specified as nonnegative scalar.

Set this property using dot notation (st.Ts = Ts).

Default: 0 (implies continuous-time)

Parameters

Parameter samples for linearizing mdl, specified as a structure or a structure array.
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Set this property using the param input argument or dot notation (st.Parameters =
param). param must be one of the following:

If param specifies tunable parameters only, then the software batch linearizes the model
using a single compilation. If you additionally configure st.OperatingPoints with
operating point objects only, the software uses single model compilation.

OperatingPoints

Operating points for linearizing mdl, specified as an operating point object, array of
operating point objects, or array of positive scalars.

Set this property using the op input argument or dot notation (st.OperatingPoints =
op). op must be one of the following:

• Operating point object, created using findop.

For example:

op = findop('magball',operspec('magball'));

• Array of operating point objects, specifying multiple operating points.

For example:

op = findop('magball',[10 20]);

• Array of positive scalars, specifying simulation snapshot times.

For example:

op = [1 4.2];

If you configure st.Parameters, then specify op as one of the following:

• Single operating point.
• Array of operating point objects whose size matches that of the parameter grid

specified by the Parameters property. When you batch linearize mdl, the software
uses only one model compilation.

• Multiple snapshot times. When you batch linearize mdl, the software simulates the
model for each snapshot time and parameter grid point combination. This operation
can be computationally expensive.
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BlockSubstitutions

Substitute linearizations for blocks and model subsystems, specified as a structure or
structure array.

Use this property to specify a custom linearization for a block or subsystem. You also can
use this syntax for blocks that do not have analytic linearizations, such as blocks with
discontinuities or triggered subsystems.

Set this property using the blocksub input argument or dot notation
(st.BlockSubstitutions = blocksubs). For information about the required
structure, see blocksub.

Options

Linearization algorithm options, specified as an options set created using
linearizeOptions.

Set this property using the opt input argument or dot notation (st.Options = opt).

Model

Name of the Simulink model to be linearized, specified as a string by the input argument
mdl.

More About

Analysis Points

Analysis points, used by the slLinearizer and slTuner interfaces, identify locations
within a model that are relevant for linear analysis and control system tuning. You
use analysis points as inputs to the linearization commands, such as getIOTransfer,
getLoopTransfer, getSensitivity, and getCompSensitivity. As inputs to the
linearization commands, analysis points can specify any open- or closed-loop transfer
function in a model. You can also use analysis points to specify design requirements
when tuning control systems using commands such as systune (requires a Robust
Control Toolbox license).

Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an analysis point.
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You can add analysis points to an slLinearizer or slTuner interface, s, when you
create the interface. For example:

s = slLinearizer('scdcascade',{'u1','y1'});

Alternatively, you can use the addPoint command.

To view all the analysis points of s, type s at the command prompt to display the
interface contents. For each analysis point of s, the display includes the block name and
port number and the name of the signal that originates at this point. You can also use
getPoints to programmatically obtain a list of all the analysis points.

For more information about how you can use analysis points, see “Managing Signals in
Control System Analysis and Design”.

Permanent Openings

Permanent openings, used by the slLinearizer and slTuner interfaces, identify
locations within a model where the software breaks the signal flow. The software
enforces these openings for linearization and tuning. Use permanent openings to isolate
a specific model component. Suppose you have a large-scale model capturing aircraft
dynamics and you want to perform linear analysis on the airframe only. You can use
permanent openings to exclude all other components of the model. Another example is
when you have cascaded loops within your model and you want to analyze a specific loop.

Location refers to a specific block output port within a model. For convenience, you can
use the name of the signal that originates from this port to refer to an opening.

You can add permanent openings to an slLinearizer or slTuner interface, s, when
you create the interface or by using the addOpening command. To remove a location
from the list of permanent openings, use the removeOpening command.

To view all the openings of s, type s at the command prompt to display the interface
contents. For each permanent opening of s, the display includes the block name and
port number and the name of the signal that originates at this location. You can also use
getOpenings to programmatically obtain a list of all the permanent openings.

Algorithms

slTuner linearizes your Simulink model using the algorithms described in “Exact
Linearization Algorithm”.
• “Managing Signals in Control System Analysis and Design”
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• “How the Software Treats Loop Openings”

See Also
addOpening | addPoint | getCompSensitivity | getIOTransfer |
getLoopTransfer | getSensitivity | linearize | looptune | systune
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update
Update operating point object with structural changes in model

Syntax

update(op)

Alternatives

As an alternative to the update function, update operating point objects using the Sync
with Model button in the Simulink Control Design GUI.

Description

update(op)  updates an operating point object, op, to reflect any changes in the
associated Simulink model, such as states being added or removed.

Examples

Open the magball model:

magball

Create an operating point object for the model:

op=operpoint('magball')

This syntax returns:

 Operating Point for the Model magball.

 (Time-Varying Components Evaluated at time t=0)

States: 

----------

(1.) magball/Controller/PID Controller/Filter



6 Alphabetical List

6-350

      x: 0            

(2.) magball/Controller/PID Controller/Integrator

      x: 14           

(3.) magball/Magnetic Ball Plant/Current

      x: 7            

(4.) magball/Magnetic Ball Plant/dhdt

      x: 0            

(5.) magball/Magnetic Ball Plant/height

      x: 0.05         

 

Inputs: None 

----------

Add an Integrator block to the model, as shown in the following figure.

Update the operating point to include this new state:

update(op)

The new operating point appears:

 Operating Point for the Model magball.

 (Time-Varying Components Evaluated at time t=0)

States: 

----------

(1.) magball/Controller/PID Controller/Filter

      x: 0            

(2.) magball/Controller/PID Controller/Integrator

      x: 14           

(3.) magball/Magnetic Ball Plant/Current
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      x: 7            

(4.) magball/Magnetic Ball Plant/dhdt

      x: 0            

(5.) magball/Magnetic Ball Plant/height

      x: 0.05         

(6.) magball/Integrator

      x: 0            

 

Inputs: None 

----------

See Also
operpoint | operspec
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Bode Plot
Bode plot of linear system approximated from nonlinear Simulink model

Library

Simulink Control Design

Description

This block is same as the Check Bode Characteristics block except for different default
parameter settings in the Bounds tab.

Compute a linear system from a nonlinear Simulink model and plot the linear system on
a Bode plot.

During simulation, the software linearizes the portion of the model between specified
linearization inputs and outputs, and plots the magnitude and phase of the linear
system.

The Simulink model can be continuous- or discrete-time or multirate, and can have time
delays. The linear system can be Single-Input Single-Output (SISO) or Multi-Input
Multi-Output (MIMO). For MIMO systems, the plots for all input/output combinations
are displayed.

You can specify piecewise-linear frequency-dependent upper and lower magnitude
bounds and view them on the Bode plot. You can also check that the bounds are satisfied
during simulation:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts, and a warning message appears at the

MATLAB prompt. You can also specify that the block:

• Evaluate a MATLAB expression.
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• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal:

• If all bounds are satisfied, the signal is true (1).
• If a bound is not satisfied, the signal is false (0).

For MIMO systems, the bounds apply to the Bode responses of linear systems computed
for all input/output combinations.

You can add multiple Bode Plot blocks to compute and plot the magnitude and phase of
various portions of the model.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation
mode.

Parameters

The following table summarizes the Bode Plot block parameters, accessible via the block
parameter dialog box.

Task Parameters

Specify inputs and
outputs (I/Os).

In Linearizations tab:

• “Linearization inputs/outputs” on page
7-5.

• “Click a signal in the model to select it” on
page 7-7.

Specify settings. In Linearizations tab:

• “Linearize on” on page 7-10.
• “Snapshot times” on page 7-11.
• “Trigger type” on page 7-11.

Configure
linearization.

Specify algorithm
options.

In Algorithm Options of Linearizations
tab:
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Task Parameters

• “Enable zero-crossing detection” on page
7-12.

• “Use exact delays” on page 7-14.
• “Linear system sample time” on page

7-14.
• “Sample time rate conversion method” on

page 7-16.
• “Prewarp frequency (rad/s)” on page

7-17.
Specify labels for
linear system I/Os
and state names.

In Labels of Linearizations tab:

• “Use full block names” on page 7-18.
• “Use bus signal names” on page 7-19.

Plot the linear system. Show Plot
(Optional) Specify bounds on magnitude
of the linear system for assertion.

In Bounds tab:

• “Include upper magnitude bound in
assertion” on page 7-20.

• “Include lower magnitude bound in
assertion” on page 7-24.

Specify assertion options (only when
you specify bounds on the linear
system).

In Assertion tab:

• “Enable assertion” on page 7-31.
• “Simulation callback when assertion fails

(optional)” on page 7-33.
• “Stop simulation when assertion fails” on

page 7-33.
• “Output assertion signal” on page 7-34.

Save linear system to MATLAB
workspace.

“Save data to workspace” on page 7-28 in
Logging tab.

Display plot window instead of block
parameters dialog box on double-
clicking the block.

“Show plot on block open” on page 7-35.
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Linearization inputs/outputs

Linearization inputs and outputs that define the portion of a nonlinear Simulink model
to linearize

.If you have defined the linearization input and output in the Simulink model, the block
automatically detects these points and displays them in the Linearization inputs/

outputs area. Click  at any time to update the Linearization inputs/outputs table
with I/Os from the model. To add other analysis points:

1

Click .

The dialog box expands to display a Click a signal in the model to select it area

and a new  button.
2 Select one or more signals in the Simulink Editor.

The selected signals appear under Model signal in the Click a signal in the
model to select it area.

3 (Optional) For buses, expand the bus signal to select individual elements.

Tip For large buses or other large lists of signals, you can enter search text for
filtering element names in the Filter by name edit box. The name match is case-
sensitive. Additionally, you can enter MATLAB “regular expression”.

To modify the filtering options, click .
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Filtering Options

• “Enable regular expression” on page 7-8

• “Show filtered results as a flat list” on page 7-9
4

Click  to add the selected signals to the Linearization inputs/outputs table.

Tip To find the location in the Simulink model corresponding to a signal in the

Linearization inputs/outputs table, select the signal in the table and click .

The table displays the following information about the selected signal:

Block : Port : Bus Element Name of the block associated with the input/output. The number
adjacent to the block name is the port number where the selected
bus signal is located. The last entry is the selected bus element
name.

Configuration Type of linearization point:

• Open-loop Input — Specifies a linearization input point after
a loop opening.

• Open-loop Output — Specifies a linearization output point
before a loop opening.

• Loop Transfer — Specifies an output point before a loop
opening followed by an input.
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• Input Perturbation — Specifies an additive input to a
signal.

• Output Measurement — Takes measurement at a signal.
• Loop Break — Specifies a loop opening.
• Sensitivity — Specifies an additive input followed by an

output measurement.
• Complementary Sensitivity — Specifies an output followed

by an additive input.

Note: If you simulate the model without specifying an input or output, the software
does not compute a linear system. Instead, you see a warning message at the MATLAB
prompt.

Settings

No default

Command-Line Information

Use getlinio and setlinio to specify linearization inputs and outputs.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Click a signal in the model to select it

Enables signal selection in the Simulink model. Appears only when you click .

When this option appears, you also see the following changes:

•
A new  button.

Use to add a selected signal as a linearization input or output in the Linearization
inputs/outputs table. For more information, see Linearization inputs/outputs.
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•
 changes to .

Use to collapse the Click a signal in the model to select it area.

Settings

No default

Command-Line Information

Use the getlinio and setlinio commands to select signals as linearization inputs and
outputs.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Enable regular expression

Enable the use of MATLAB regular expressions for filtering signal names. For example,
entering t$ in the Filter by name edit box displays all signals whose names end with a
lowercase t (and their immediate parents). For details, see “Regular Expressions”.

Settings

Default: On

 On
Allow use of MATLAB regular expressions for filtering signal names.

 Off
Disable use of MATLAB regular expressions for filtering signal names. Filtering
treats the text you enter in the Filter by name edit box as a literal string.

Dependencies

Selecting the Options button on the right-hand side of the Filter by name edit box ( )
enables this parameter.
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Show filtered results as a flat list

Uses a flat list format to display the list of filtered signals, based on the search text in the
Filter by name edit box. The flat list format uses dot notation to reflect the hierarchy
of bus signals. The following is an example of a flat list format for a filtered set of nested
bus signals.

Settings

Default: Off

 On
Display the filtered list of signals using a flat list format, indicating bus hierarchies
with dot notation instead of using a tree format.

 Off
Display filtered bus hierarchies using a tree format.

Dependencies

Selecting the Options button on the right-hand side of the Filter by name edit box ( )
enables this parameter.
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Linearize on

When to compute the linear system during simulation.

Settings

Default: Simulation snapshots

Simulation snapshots

Specific simulation time, specified in Snapshot times.

Use when you:

• Know one or more times when the model is at steady-state operating point
• Want to compute the linear systems at specific times

External trigger

Trigger-based simulation event. Specify the trigger type in Trigger type.

Use when a signal generated during simulation indicates steady-state operating
point.

Selecting this option adds a trigger port to the block. Use this port to connect the
block to the trigger signal.

For example, for an aircraft model, you might want to compute the linear system
whenever the fuel mass is a fraction of the maximum fuel mass. In this case, model
this condition as an external trigger.

Dependencies

• Setting this parameter to Simulation snapshots enables Snapshot times.
• Setting this parameter to External trigger enables Trigger type.

Command-Line Information
Parameter: LinearizeAt
Type: string
Value: 'SnapshotTimes' | 'ExternalTrigger'
Default: 'SnapshotTimes'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”
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“Model Verification at Default Simulation Snapshot Time” on page 5-6

Snapshot times

One or more simulation times. The linear system is computed at these times.

Settings

Default: 0

• For a different simulation time, enter the time. Use when you:

• Want to plot the linear system at a specific time
• Know the approximate time when the model reaches steady-state operating point

• For multiple simulation times, enter a vector. Use when you want to compute and plot
linear systems at multiple times.

Snapshot times must be less than or equal to the simulation time specified in the
Simulink model.

Dependencies

Selecting Simulation snapshots in Linearize on enables this parameter.

Command-Line Information
Parameter: SnapshotTimes
Type: string
Value: 0 | positive real number | vector of positive real numbers
Default: 0

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Trigger type

Trigger type of an external trigger for computing linear system.

Settings

Default: Rising edge
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Rising edge

Rising edge of the external trigger signal.
Falling edge

Falling edge of the external trigger signal.

Dependencies

Selecting External trigger in Linearize on enables this parameter.

Command-Line Information
Parameter: TriggerType
Type: string
Value: 'rising' | 'falling'
Default: 'rising'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Enable zero-crossing detection

Enable zero-crossing detection to ensure that the software computes the linear system
characteristics at the following simulation times:

• The exact snapshot times, specified in Snapshot times.

As shown in the following figure, when zero-crossing detection is enabled, the
variable-step Simulink solver simulates the model at the snapshot time Tsnap. Tsnap
may lie between the simulation time steps Tn-1 and Tn which are automatically chosen
by the solver.

Computes linear system
characteristics at this time point

TimeTn-1 TnTsnap
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• The exact times when an external trigger is detected, specified in Trigger type.

As shown in the following figure, when zero-crossing detection is enabled, the
variable-step Simulink solver simulates the model at the time, Ttrig, when the trigger
signal is detected. Ttrig may lie between the simulation time steps Tn-1 and Tn which
are automatically chosen by the solver.

Computes linear system
characteristics at this time point

Time

Amplitude

1

0
Tn-1

Tn
Ttrig

Trigger signal

For more information on zero-crossing detection, see “Zero-Crossing Detection” in the
Simulink User Guide.

Settings

Default: On

 On
Compute linear system characteristics at the exact snapshot time or exact time when
a trigger signal is detected.

This setting is ignored if the Simulink solver is fixed step.

 Off
Compute linear system characteristics at the simulation time steps that the variable-
step solver chooses. The software may not compute the linear system at the exact
snapshot time or exact time when a trigger signal is detected.

Command-Line Information
Parameter: ZeroCross
Type: string
Value: 'on' | 'off'
Default: 'on'
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See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Use exact delays

How to represent time delays in your linear model.

Use this option if you have blocks in your model that have time delays.

Settings

Default: Off

 On
Return a linear model with exact delay representations.

 Off
Return a linear model with Padé approximations of delays, as specified in your
Transport Delay and Variable Transport Delay blocks.

Command-Line Information
Parameter: UseExactDelayModel
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Linear system sample time

Sample time of the linear system computed during simulation.

Use this parameter to:
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• Compute a discrete-time system with a specific sample time from a continuous-time
system

• Resample a discrete-time system with a different sample time
• Compute a continuous-time system from a discrete-time system

When computing discrete-time systems from continuous-time systems and vice-versa,
the software uses the conversion method specified in Sample time rate conversion
method.

Settings

Default: auto

auto. Computes the sample time as:

• 0, for continuous-time models.
• For models that have blocks with different sample times (multi-rate models),

least common multiple of the sample times. For example, if you have a mix of
continuous-time and discrete-time blocks with sample times of 0, 0.2 and 0.3, the
sample time of the linear model is 0.6.

Positive finite value. Use to compute:

• A discrete-time linear system from a continuous-time system.
• A discrete-time linear system from another discrete-time system with a different

sample time

0

Use to compute a continuous-time linear system from a discrete-time model.

Command-Line Information
Parameter: SampleTime
Type: string
Value: auto | Positive finite value | 0
Default: auto

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6
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Sample time rate conversion method

Method for converting the sample time of single- or multi-rate models.

This parameter is used only when the value of Linear system sample time is not auto.

Settings

Default: Zero-Order Hold

Zero-Order Hold

Zero-order hold, where the control inputs are assumed piecewise constant over the
sampling time Ts. For more information, see “Zero-Order Hold” in Control System
Toolbox User's Guide.

This method usually performs better in time domain.
Tustin (bilinear)

Bilinear (Tustin) approximation without frequency prewarping. The software rounds
off fractional time delays to the nearest multiple of the sampling time. For more
information, see “Tustin Approximation” in Control System Toolbox User's Guide.

This method usually perform better in the frequency domain.
Tustin with Prewarping

Bilinear (Tustin) approximation with frequency prewarping. Also specify the prewarp
frequency in Prewarp frequency (rad/s). For more information, see “Tustin
Approximation” in Control System Toolbox User's Guide.

This method usually perform better in the frequency domain. Use this method to
ensure matching at frequency region of interest.

Upsampling when possible, Zero-Order Hold otherwise

Upsample a discrete-time system when possible and use Zero-Order Hold
otherwise.

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Upsampling when possible, Tustin otherwise

Upsample a discrete-time system when possible and use Tustin (bilinear)
otherwise.
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You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Upsampling when possible, Tustin with Prewarping otherwise

Upsample a discrete-time system when possible and use Tustin with Prewarping
otherwise. Also, specify the prewarp frequency in Prewarp frequency (rad/s).

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Dependencies

Selecting either:

• Tustin with Prewarping

• Upsampling when possible, Tustin with Prewarping otherwise

enables Prewarp frequency (rad/s).

Command-Line Information
Parameter: RateConversionMethod
Type: string
Value: 'zoh' | 'tustin' | 'prewarp'| 'upsampling_zoh'|
'upsampling_tustin'| 'upsampling_prewarp'
Default: 'zoh'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Prewarp frequency (rad/s)

Prewarp frequency for Tustin method, specified in radians/second.

Settings

Default: 10

Positive scalar value, smaller than the Nyquist frequency before and after resampling. A
value of 0 corresponds to the standard Tustin method without frequency prewarping.
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Dependencies

Selecting either

• Tustin with Prewarping

• Upsampling when possible, Tustin with Prewarping otherwise

in Sample time rate conversion method enables this parameter.

Command-Line Information
Parameter: PreWarpFreq
Type: string
Value: 10 | positive scalar value
Default: 10

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Use full block names

How the state, input and output names appear in the linear system computed during
simulation.

The linear system is a state-space object and system states and input/output names
appear in following state-space object properties:

Input, Output or State Name Appears in Which State-Space Object Property

Linearization input name InputName

Linearization output name OutputName

State names StateName

Settings

Default: Off

 On
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Show state and input/output names with their path through the model hierarchy.
For example, in the chemical reactor model, a state in the Integrator1 block of the
CSTR subsystem appears with full path as scdcstr/CSTR/Integrator1.

 Off
Show only state and input/output names. Use this option when the signal name
is unique and you know where the signal is location in your Simulink model. For
example, a state in the Integrator1 block of the CSTR subsystem appears as
Integrator1.

Command-Line Information
Parameter: UseFullBlockNameLabels
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Use bus signal names

How to label signals associated with linearization inputs and outputs on buses, in the
linear system computed during simulation (applies only when you select an entire bus as
an I/O point).

Selecting an entire bus signal is not recommended. Instead, select individual bus
elements.

You cannot use this parameter when your model has mux/bus mixtures.

Settings

Default: Off

 On
Use the signal names of the individual bus elements.

Bus signal names appear when the input and output are at the output of the
following blocks:
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• Root-level inport block containing a bus object
• Bus creator block
• Subsystem block whose source traces back to one of the following blocks:

• Output of a bus creator block
• Root-level inport block by passing through only virtual or nonvirtual

subsystem boundaries

 Off
Use the bus signal channel number.

Command-Line Information
Parameter: UseBusSignalLabels
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Include upper magnitude bound in assertion

Check that the Bode response satisfies upper magnitude bounds, specified in
Frequencies (rad/sec) and Magnitude (dB), during simulation. The software displays
a warning if the magnitude violates the upper bounds.

This parameter is used for assertion only if Enable assertion in the Assertion tab is
selected.

You can specify multiple upper magnitude bounds on the linear system. The bounds also
appear on the Bode magnitude plot. If you clear Enable assertion, the bounds are not
used for assertion but continue to appear on the plot.

Settings

Default:
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• Off for Bode Plot block.
• On for Check Bode Characteristics block.

 On
Check that the magnitude satisfies the specified upper bounds, during simulation.

 Off
Do not check that the magnitude satisfies the specified upper bounds, during
simulation.

Tips

• Clearing this parameter disables the upper magnitude bounds and the software stops
checking that the bounds are satisfied during simulation. The bound segments are
also greyed out on the plot.

• If you specify both upper and lower magnitude bounds but want to include only the
lower bounds for assertion, clear this parameter.

• To only view the bounds on the plot, clear Enable assertion.

Command-Line Information
Parameter: EnableUpperBound
Type: string
Value: 'on' | 'off'
Default: 'off' for Bode Plot block, 'on' for Check Bode Characteristics block.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”
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“Model Verification at Default Simulation Snapshot Time” on page 5-6

Frequencies (rad/sec)

Frequencies for one or more upper magnitude bound segments, specified in radians/sec.

Specify the corresponding magnitudes in Magnitude (dB).

Settings

Default:
[] for Bode Plot block
[10 100] for Check Bode Characteristics block

Must be specified as start and end frequencies:

• Positive finite numbers for a single bound with one edge
• Matrix of positive finite numbers for a single bound with multiple edges

For example, type [0.1 1;1 10] for two edges at frequencies [0.1 1] and [1 10].
• Cell array of matrices with positive finite numbers for multiple bounds

Tips

• To assert that magnitudes that correspond to the frequencies are satisfied, select both
Include upper magnitude bound in assertion and Enable assertion.

• You can add or modify frequencies from the plot window:

• To add new frequencies, right-click the plot, and select Bounds > New Bound.
Select Upper gain limit in Design requirement type, and specify the
frequencies in the Frequency column. Specify the corresponding magnitudes in
the Magnitude column.

• To modify the frequencies, drag the bound segment. Alternatively, right-click the
segment, and select Bounds > Edit Bound. Specify the new frequencies in the
Frequency column.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: UpperBoundFrequencies
Type: string



 Bode Plot

7-23

Value: [] | [10 100]| positive finite numbers | matrix of positive
finite numbers | cell array of matrices with positive finite numbers.
Must be specified inside single quotes ('').
Default: '[]' for Bode Plot block, '[10 100]' for Check Bode Characteristics block

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Magnitudes (dB)

Magnitude values for one or more upper magnitude bound segments, specified in
decibels.

Specify the corresponding frequencies in Frequencies (rad/sec).

Settings

Default:
[] for Bode Plot block
[-20 -20] for Check Bode Characteristics block

Must be specified as start and end magnitudes:

• Finite numbers for a single bound with one edge
• Matrix of finite numbers for a single bound with multiple edges

For example, type [–10 –10; –20 –20] for two edges at magnitudes [–10 –10] and [–20
–20].

• Cell array of matrices with finite numbers for multiple bounds

Tips

• To assert that magnitude bounds are satisfied, select both Include upper
magnitude bound in assertion and Enable assertion.

• You can add or modify magnitudes from the plot window:

• To add a new magnitude, right-click the plot, and select Bounds > New Bound.
Select Upper gain limit in Design requirement type, and specify the
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magnitude in the Magnitude column. Specify the corresponding frequencies in
the Frequency column.

• To modify the magnitudes, drag the bound segment. Alternatively, right-click the
segment, and select Bounds > Edit Bound. Specify the new magnitudes in the
Magnitude column.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: UpperBoundMagnitudes
Type: string
Value: [] | [-20 -20] | finite numbers | matrix of finite numbers | cell
array of matrices with finite numbers. Must be specified inside single quotes
('').
Default: '[]' for Bode Plot block, '[-20 -20]' for Check Bode Characteristics block.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Include lower magnitude bound in assertion

Check that the Bode response satisfies lower magnitude bounds, specified in
Frequencies (rad/sec) and Magnitude (dB), during simulation. The software displays
a warning if the magnitude violates the lower bounds.

This parameter is used for assertion only if Enable assertion in the Assertion tab is
selected.

You can specify multiple lower magnitude bounds on the linear system computed during
simulation. The bounds also appear on the Bode magnitude plot. If you clear Enable
assertion, the bounds are not used for assertion but continue to appear on the plot.

Settings

Default:

• Off for Bode Plot block.
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• On for Check Bode Characteristics block

 On
Check that the magnitude satisfies the specified lower bounds during simulation.

 Off
Do not check that the magnitude satisfies the specified upper bounds during
simulation.

Tips

• Clearing this parameter disables the lower magnitude bound and the software stops
checking that the bounds are satisfied during simulation. The bound segments are
also greyed out on the plot.

• If you specify both upper and lower magnitude bounds on the Bode magnitude but
want to include only the upper bound for assertion, clear this parameter.

• To only view the bound on the plot, clear Enable assertion.

Command-Line Information
Parameter: EnableLowerBound
Type: string
Value: 'on' | 'off'
Default: 'off' for Bode Plot block, 'on' for Check Bode Characteristics block

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”
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“Model Verification at Default Simulation Snapshot Time” on page 5-6

Frequencies (rad/sec)

Frequencies for one or more lower magnitude bound segments, specified in radians/sec.

Specify the corresponding magnitudes in Magnitude (dB).

Settings

Default:
[] for Bode Plot block
[0.1 1] for Check Bode Characteristics block

Must be specified as start and end frequencies:

• Positive finite numbers for a single bound with one edge
• Matrix of positive finite numbers for a single bound with multiple edges

For example, type [0.1 1;1 10] to specify two edges with frequencies [0.1 1] and [1 10].
• Cell array of matrices with positive finite numbers for multiple bounds

Tips

• To assert that magnitude bounds that correspond to the frequencies are satisfied,
select both Include lower magnitude bound in assertion and Enable assertion.

• You can add or modify frequencies from the plot window:

• To add a new frequencies, right-click the plot, and select Bounds > New Bound.
Select Lower gain limit in Design requirement type, and specify the
frequencies in the Frequency column. Specify the corresponding magnitudes in
the Magnitude column.

• To modify the frequencies, drag the bound segment. Alternatively, right-click the
segment, and select Bounds > Edit Bound. Specify the new frequencies in the
Frequency column.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: LowerBoundFrequencies
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Type: string
Value: [] | [0.1 1] | positive finite numbers | matrix of positive finite
numbers | cell array of matrices with positive finite numbers. Must be
specified inside single quotes ('').
Default: '[]' for Bode Plot block, '[0.1 1]' for Check Bode Characteristics block.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Magnitudes (dB)

Magnitude values for one or more lower magnitude bound segments, specified in decibels.

Specify the corresponding frequencies in Frequencies (rad/sec).

Settings

Default:
[] for Bode Plot block
[20 20] for Check Bode Characteristics block

Must be specified as start and end magnitudes:

• Finite numbers for a single bound with one edge
• Matrix of finite numbers for a single bound with multiple edges

For example, type [20 20; 40 40] for two edges with magnitudes [20 20] and [40 40].
• Cell array of matrices with finite numbers for multiple bounds

Tips

• To assert that magnitude bounds are satisfied, select both Include lower
magnitude bound in assertion and Enable assertion.

• If Include lower magnitude bound in assertion is not selected, the bound
segment is disabled on the plot.

• To only view the bound on the plot, clear Enable assertion.
• You can add or modify magnitudes from the plot window:
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• To add a new magnitude, right-click the plot, and select Bounds > New Bound.
Select Lower gain limit in Design requirement type and specify the
magnitude in the Magnitude column. Specify the corresponding frequencies in
the Frequency column.

• To modify the magnitudes, drag the bound segment. Alternatively, right-click the
segment, and select Bounds > Edit Bound. Specify the new magnitude values in
the Magnitude column.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: LowerBoundMagnitudes
Type: string
Value: [] | [20 20] | finite numbers | matrix of finite numbers | cell
array of matrices with finite numbers. Must be specified inside single quotes
('').
Default: '[]' for Bode Plot block, '[20 20]' for Check Bode Characteristics block.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Save data to workspace

Save one or more linear systems to perform further linear analysis or control design.

The saved data is in a structure whose fields include:

• time — Simulation times at which the linear systems are computed.
• values — State-space model representing the linear system. If the linear system is

computed at multiple simulation times, values is an array of state-space models.
• operatingPoints — Operating points corresponding to each linear system in

values. This field exists only if Save operating points for each linearization is
checked.

The location of the saved data structure depends upon the configuration of the Simulink
model:
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• If the Simulink model is not configured to save simulation output as a single object,
the data structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the
data structure is a field in the Simulink.SimulationOutput object that contains
the logged simulation data.

To configure your model to save simulation output in a single object, in the
Simulink editor, select Simulation > Model Configuration Parameters. In the
Configuration Parameters dialog box, in the Data Import/Export pane, check Save
Simulation output as single object.

For more information about data logging in Simulink, see “Export Simulation Data” and
the “Simulink.SimulationOutput class” reference page.

Settings

Default: Off

 On
Save the computed linear system.

 Off
Do not save the computed linear system.

Dependencies

This parameter enables Variable name.

Command-Line Information
Parameter: SaveToWorkspace
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Variable name
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Name of the data structure that stores one or more linear systems computed during
simulation.

The location of the saved data structure depends upon the configuration of the Simulink
model:

• If the Simulink model is not configured to save simulation output as a single object,
the data structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the
data structure is a field in the Simulink.SimulationOutput object that contains
the logged simulation data. The

The name must be unique among the variable names used in all data logging model
blocks, such as Linear Analysis Plot blocks, Model Verification blocks, Scope blocks, To
Workspace blocks, and simulation return variables such as time, states, and outputs.

For more information about data logging in Simulink, see “Export Simulation Data” and
the “Simulink.SimulationOutput class” reference page.

Settings

Default: sys

String.

Dependencies

Save data to workspace enables this parameter.

Command-Line Information
Parameter: SaveName
Type: string
Value: sys | any string. Must be specified inside single quotes ('').
Default: 'sys'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Save operating points for each linearization
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When saving linear systems to the workspace for further analysis or control design, also
save the operating point corresponding to each linearization. Using this option adds
a field named operatingPoints to the data structure that stores the saved linear
systems.

Settings

Default: Off

 On
Save the operating points.

 Off
Do not save the operating points.

Dependencies

Save data to workspace enables this parameter.

Command-Line Information
Parameter: SaveOperatingPoint
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Enable assertion

Enable the block to check that bounds specified and included for assertion in the Bounds
tab are satisfied during simulation. Assertion fails if a bound is not satisfied. A warning,
reporting the assertion failure, appears at the MATLAB prompt.

If assertion fails, you can optionally specify that the block:

• Execute a MATLAB expression, specified in Simulation callback when assertion
fails (optional).
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• Stop the simulation and bring that block into focus, by selecting Stop simulation
when assertion fails.

For the Linear Analysis Plots blocks, this parameter has no effect because no
bounds are included by default. If you want to use the Linear Analysis Plots blocks
for assertion, specify and include bounds in the Bounds tab.

Clearing this parameter disables assertion, i.e., the block no longer checks that specified
bounds are satisfied. The block icon also updates to indicate that assertion is disabled.

In the Configuration Parameters dialog box of the Simulink model, the Model
Verification block enabling option in the Debugging area of Data Validity node,
lets you to enable or disable all model verification blocks in a model, regardless of the
setting of this option.

Settings

Default: On

 On
Check that bounds included for assertion in the Bounds tab are satisfied during
simulation. A warning, reporting assertion failure, is displayed at the MATLAB
prompt if bounds are violated.

 Off
Do not check that bounds included for assertion are satisfied during simulation.

Dependencies

This parameter enables:

• Simulation callback when assertion fails (optional)
• Stop simulation when assertion fails
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Command-Line Information
Parameter: enabled
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Simulation callback when assertion fails (optional)

MATLAB expression to execute when assertion fails.

Because the expression is evaluated in the MATLAB workspace, define all variables used
in the expression in that workspace.

Settings

No Default

A MATLAB expression.

Dependencies

Enable assertion enables this parameter.

Command-Line Information
Parameter: callback
Type: string
Value: '' | MATLAB expression
Default: ''

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Stop simulation when assertion fails
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Stop the simulation when a bound specified in the Bounds tab is violated during
simulation, i.e., assertion fails.

If you run the simulation from the Simulink Editor, the Simulation Diagnostics window
opens to display an error message. Also, the block where the bound violation occurs is
highlighted in the model.

Settings

Default: Off

 On
Stop simulation if a bound specified in the Bounds tab is violated.

 Off
Continue simulation if a bound is violated with a warning message at the MATLAB
prompt.

Tips

• Because selecting this option stops the simulation as soon as the assertion fails,
assertion failures that might occur later during the simulation are not reported. If you
want all assertion failures to be reported, do not select this option.

Dependencies

Enable assertion enables this parameter.

Command-Line Information
Parameter: stopWhenAssertionFail
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Output assertion signal



 Bode Plot

7-35

Output a Boolean signal that, at each time step, is:

• True (1) if assertion succeeds, i.e., all bounds are satisfied
• False (1) if assertion fails, i.e., a bound is violated.

The output signal data type is Boolean only if the Implement logic signals as Boolean
data option in the Optimization pane of the Configuration Parameters dialog box of the
Simulink model is selected. Otherwise, the data type of the output signal is double.

Selecting this parameter adds an output port to the block that you can connect to any
block in the model.

Settings

Default:Off

 On
Output a Boolean signal to indicate assertion status. Adds a port to the block.

 Off
Do not output a Boolean signal to indicate assertion status.

Tips

• Use this parameter to design complex assertion logic. For an example, see “Model
Verification Using Simulink Control Design and Simulink Verification Blocks” on
page 5-25.

Command-Line Information
Parameter: export
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Show plot on block open
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Open the plot window instead of the Block Parameters dialog box when you double-click
the block in the Simulink model.

Use this parameter if you prefer to open and perform tasks, such as adding or modifying
bounds, in the plot window instead of the Block Parameters dialog box. If you want to

access the block parameters from the plot window, select Edit or click .

For more information on the plot, see Show Plot.

Settings

Default: Off

 On
Open the plot window when you double-click the block.

 Off
Open the Block Parameters dialog box when double-clicking the block.

Command-Line Information
Parameter: LaunchViewOnOpen
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Show Plot

Open the plot window.

Use the plot to view:

• Linear system characteristics computed from the nonlinear Simulink model during
simulation
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You must click this button before you simulate the model to view the linear
characteristics.

You can display additional characteristics, such as the peak response time and
stability margins, of the linear system by right-clicking the plot and selecting
Characteristics.

• Bounds on the linear system characteristics

You can specify bounds in the Bounds tab of the Block Parameters dialog box or
right-click the plot and select Bounds > New Bound. For more information on
the types of bounds you can specify on each plot, see “Verifiable Linear System
Characteristics” on page 5-5 in the User's Guide.

You can modify bounds by dragging the bound segment or by right-clicking the plot
and selecting Bounds > Edit Bound. Before you simulate the model, click Update
Block to update the bound value in the block parameters.

Typical tasks that you perform in the plot window include:

•
Opening the Block Parameters dialog box by clicking  or selecting Edit.

•
Finding the block that the plot window corresponds to by clicking  or selecting
View > Highlight Simulink Block. This action makes the Simulink Editor active
and highlights the block.

• Simulating the model by clicking  or selecting Simulation > Run. This action
also linearizes the portion of the model between the specified linearization input and
output.

•
Adding legend on the linear system characteristic plot by clicking .

See Also
Check Bode Characteristics

Tutorials
• “Visualize Bode Response of Simulink Model During Simulation” on page 2-53
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• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-74
• “Visualize Linear System of a Continuous-Time Model Discretized During Simulation”

on page 2-81
• Plotting Linear System Characteristics of a Chemical Reactor
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Check Bode Characteristics
Check that Bode magnitude bounds are satisfied during simulation

Library

Simulink Control Design

Description

This block is same as the Bode Plot block except for different default parameter settings
in the Bounds tab.

Check that upper and lower magnitude bounds on the Bode response of a linear system,
computed from a nonlinear Simulink model, are satisfied during simulation.

The Simulink model can be continuous-time, discrete-time or multi-rate and can have
time delays. The computed linear system can be Single-Input Single-Output (SISO) or
Multi-Input Multi-Output (MIMO).

During simulation, the software linearizes the portion of the model between specified
linearization inputs and outputs, computes the Bode magnitude and phase, and checks
that the magnitude satisfies the specified bounds.

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts, and a warning message appears at the

MATLAB prompt. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal:

• If all bounds are satisfied, the signal is true (1).
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• If a bound is not satisfied, the signal is false (0).

For MIMO systems, the bounds apply to the Bode responses computed for all input/
output combinations.

You can add multiple Check Bode Characteristics blocks in your model to check upper
and lower Bode magnitude bounds on various portions of the model.

You can also plot the magnitude and phase on a Bode plot and graphically verify that the
magnitude satisfies the bounds.

This block and the other Model Verification blocks test that the linearized behavior of a
nonlinear Simulink model is within specified bounds during simulation.

• When a model does not violate any bound, you can disable the block by clearing the
assertion option. If you modify the model, you can re-enable assertion to ensure that
your changes do not cause the model to violate a bound.

• When a model violates any bound, you can use Simulink Design Optimization
software to optimize the linear system to meet the specified requirements in this
block.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation
mode.

Parameters

The following table summarizes the Check Bode Characteristics block parameters,
accessible via the block parameter dialog box. For more information, see “Parameters” on
page 7-3 in the Bode Plot block reference page.

Task Parameters

Specify inputs and
outputs (I/Os).

In Linearizations tab:

• Linearization inputs/outputs
• Click a model signal to add it as a

linearization I/O

Configure
linearization.

Specify settings. In Linearizations tab:



 Check Bode Characteristics

7-41

Task Parameters

• Linearize on
• Snapshot times
• Trigger type

Specify algorithm
options.

In Linearizations tab:

• Enable zero-crossing detection
• Use exact delays
• Linear system sample time
• Sample time rate conversion method
• Prewarp frequency (rad/s)

Specify labels for
linear system I/Os
and state names.

In Linearizations tab:

• Use full block names
• Use bus signal names

Specify bounds on the linear system for
assertion.

In Bounds tab:

• Include upper magnitude bound in
assertion

• Include lower magnitude bound in
assertion

Specify assertion options (only when you
specify bounds on the linear system).

In Assertion tab:

• Enable assertion
• Simulation callback when assertion

fails (optional)
• Stop simulation when assertion fails
• Output assertion signal

Save linear system to MATLAB
workspace.

Save data to workspace in Logging tab.

View bounds violations graphically in a
plot window.

Show Plot
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Task Parameters

Display plot window instead of block
parameters dialog box on double-clicking
the block.

Show plot on block open

See Also

Bode Plot

Tutorials

• “Model Verification at Default Simulation Snapshot Time” on page 5-6
• “Model Verification at Multiple Simulation Snapshots” on page 5-15
• “Model Verification Using Simulink Control Design and Simulink Verification Blocks”

on page 5-25
• Verifying Frequency-Domain Characteristics of an Aircraft

How To

“Monitoring Linear System Characteristics in Simulink Models” on page 5-2
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Check Gain and Phase Margins
Check that gain and phase margin bounds are satisfied during simulation

Library

Simulink Control Design

Description

This block is same as the Gain and Phase Margin Plot block except for different default
parameter settings in the Bounds tab.

Check that bounds on gain and phase margins of a linear system, computed from a
nonlinear Simulink model, are satisfied during simulation.

The Simulink model can be continuous-time, discrete-time or multirate and can have
time delays. Because you can specify only one linearization input/output pair in this
block, the linear system is Single-Input Single-Output (SISO).

During simulation, the software linearizes the portion of the model between specified
linearization inputs and outputs, computes the gain and phase margins, and checks that
the gain and phase margins satisfy the specified bounds.

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts, and a warning message appears at the

MATLAB prompt. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal:

• If all bounds are satisfied, the signal is true (1).
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• If a bound is not satisfied, the signal is false (0).

You can add multiple Check Gain and Phase Margins blocks in your model to check gain
and phase margin bounds on various portions of the model.

You can also plot the gain and phase margins on a Bode, Nichols or Nyquist plot or view
the margins in a table and verify that the gain and phase margins satisfy the bounds.

This block and the other Model Verification blocks test that the linearized behavior of a
nonlinear Simulink model is within specified bounds during simulation.

• When a model does not violate any bound, you can disable the block by clearing the
assertion option. If you modify the model, you can re-enable assertion to ensure that
your changes do not cause the model to violate a bound.

• When a model violates any bound, you can use Simulink Design Optimization
software to optimize the linear system to meet the specified requirements in this
block.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation
mode.

Parameters

The following table summarizes the Gain and Phase Margin Plot block parameters,
accessible via the block parameter dialog box. For more information, see “Parameters” on
page 7-64 in the Gain and Phase Margin Plot block reference page.

Task Parameters

Specify inputs and
outputs (I/Os).

In Linearizations tab:

• Linearization inputs/outputs
• Click a model signal to add it as a

linearization I/O

Configure
linearization.

Specify settings. In Linearizations tab:

• Linearize on
• Snapshot times
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Task Parameters

• Trigger type
Specify algorithm
options.

In Linearizations tab:

• Enable zero-crossing detection
• Use exact delays
• Linear system sample time
• Sample time rate conversion method
• Prewarp frequency (rad/s)

Specify labels for
linear system I/Os
and state names.

In Linearizations tab:

• Use full block names
• Use bus signal names

Specify bounds on gain and phase
margins of the linear system for
assertion.

Include gain and phase margins in
assertion in Bounds tab.

Specify assertion options (only when you
specify bounds on the linear system).

In Assertion tab:

• Enable assertion
• Simulation callback when assertion

fails (optional)
• Stop simulation when assertion fails
• Output assertion signal

Save linear system to MATLAB
workspace.

Save data to workspace in Logging tab.

View bounds violations graphically in a
plot window.

Show Plot

Display plot window instead of block
parameters dialog box on double-clicking
the block.

Show plot on block open

See Also

Gain and Phase Margin Plot
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Tutorials

• “Model Verification at Default Simulation Snapshot Time” on page 5-6
• “Model Verification at Multiple Simulation Snapshots” on page 5-15
• “Model Verification Using Simulink Control Design and Simulink Verification Blocks”

on page 5-25
• Verifying Frequency-Domain Characteristics of an Aircraft

How To

“Monitoring Linear System Characteristics in Simulink Models” on page 5-2
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Check Linear Step Response Characteristics
Check that step response bounds on linear system are satisfied during simulation

Library

Simulink Control Design

Description

This block is same as the Linear Step Response Plot block except for different default
parameter settings in the Bounds tab.

Check that bounds on step response characteristics of a linear system, computed from a
nonlinear Simulink model, are satisfied during simulation.

The Simulink model can be continuous-time, discrete-time or multirate and can have
time delays. Because you can specify only one linearization input/output pair in this
block, the linear system is Single-Input Single-Output (SISO).

During simulation, the software linearizes the portion of the model between specified
linearization inputs and outputs, computes the step response and checks that the step
response satisfies the specified bounds:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts, and a warning message appears at the

MATLAB prompt. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal:

• If all bounds are satisfied, the signal is true (1).



7 Blocks — Alphabetical List

7-48

• If a bound is not satisfied, the signal is false (0).

You can add multiple Check Linear Step Response Characteristics blocks in your model
to check step response bounds on various portions of the model.

You can also plot the step response and graphically verify that the step response satisfies
the bounds.

This block and the other Model Verification blocks test that the linearized behavior of a
nonlinear Simulink model is within specified bounds during simulation.

• When a model does not violate any bound, you can disable the block by clearing the
assertion option. If you modify the model, you can re-enable assertion to ensure that
your changes do not cause the model to violate a bound.

• When a model violates any bound, you can use Simulink Design Optimization
software to optimize the linear system to meet the specified requirements in this
block.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation
mode.

Parameters

The following table summarizes the Linear Step Response Plot block parameters,
accessible via the block parameter dialog box. For more information, see “Parameters” on
page 7-99 in the Linear Step Response Plot block reference page.

Task Parameters

Specify inputs and
outputs (I/Os).

In Linearizations tab:

• Linearization inputs/outputs
• Click a model signal to add it as a

linearization I/O

Configure
linearization.

Specify settings. In Linearizations tab:

• Linearize on
• Snapshot times



 Check Linear Step Response Characteristics

7-49

Task Parameters

• Trigger type
Specify algorithm
options.

In Linearizations tab:

• Enable zero-crossing detection
• Use exact delays
• Linear system sample time
• Sample time rate conversion method
• Prewarp frequency (rad/s)

Specify labels for
linear system I/Os
and state names.

In Linearizations tab:

• Use full block names
• Use bus signal names

Specify bounds on the linear system for
assertion.

Include step response bounds in
assertion in Bounds tab.

Specify assertion options (only when you
specify bounds on the linear system).

In Assertion tab:

• Enable assertion
• Simulation callback when assertion

fails (optional)
• Stop simulation when assertion fails
• Output assertion signal

Save linear system to MATLAB
workspace.

Save data to workspace in Logging tab.

View bounds violations graphically in a
plot window.

Show Plot

Display plot window instead of block
parameters dialog box on double-clicking
the block.

Show plot on block open

See Also

Linear Step Response Plot
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Tutorials

• “Model Verification at Default Simulation Snapshot Time” on page 5-6
• “Model Verification at Multiple Simulation Snapshots” on page 5-15
• “Model Verification Using Simulink Control Design and Simulink Verification Blocks”

on page 5-25
• Verifying Frequency-Domain Characteristics of an Aircraft

How To

“Monitoring Linear System Characteristics in Simulink Models” on page 5-2
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Check Nichols Characteristics
Check that gain and phase bounds on Nichols response are satisfied during simulation

Library

Simulink Control Design

Description 

This block is same as the Nichols Plot block except for different default parameter
settings in the Bounds tab.

Check that open- and closed-loop gain and phase bounds on Nichols response of a linear
system, computed from a nonlinear Simulink model, are satisfied during simulation.

The Simulink model can be continuous-time, discrete-time or multirate and can have
time delays. Because you can specify only one linearization input/output pair in this
block, the linear system is Single-Input Single-Output (SISO).

During simulation, the software linearizes the portion of the model between specified
linearization inputs and outputs, computes the magnitude and phase, and checks that
the gain and phase satisfy the specified bounds:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts, and a warning message appears at the

MATLAB prompt. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal:

• If all bounds are satisfied, the signal is true (1).
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• If a bound is not satisfied, the signal is false (0).

You can add multiple Check Nichols Characteristics blocks in your model to check gain
and phase bounds on various portions of the model.

You can also plot the linear system on a Nichols plot and graphically verify that the
Nichols response satisfies the bounds.

This block and the other Model Verification blocks test that the linearized behavior of a
nonlinear Simulink model is within specified bounds during simulation.

• When a model does not violate any bound, you can disable the block by clearing the
assertion option. If you modify the model, you can re-enable assertion to ensure that
your changes do not cause the model to violate a bound.

• When a model violates any bound, you can use Simulink Design Optimization
software to optimize the linear system to meet the specified requirements in this
block.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation
mode.

Parameters
The following table summarizes the Nichols Plot block parameters, accessible via the
block parameter dialog box. For more information, see “Parameters” on page 7-136 in
the Nichols Plot block reference page.

Task Parameters

Specify inputs and
outputs (I/Os).

In Linearizations tab:

• Linearization inputs/outputs
• Click a model signal to add it as a

linearization I/O

Configure
linearization.

Specify settings. In Linearizations tab:

• Linearize on
• Snapshot times
• Trigger type
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Task Parameters

Specify algorithm
options.

In Linearizations tab:

• Enable zero-crossing detection
• Use exact delays
• Linear system sample time
• Sample time rate conversion method
• Prewarp frequency (rad/s)

Specify labels for
linear system I/Os
and state names.

In Linearizations tab:

• Use full block names
• Use bus signal names

Specify bounds on gains and phases of the
linear system for assertion.

In Bounds tab:

• Include gain and phase margins in
assertion

• Include closed-loop peak gain in
assertion

• Include open-loop gain-phase bound
in assertion

Specify assertion options (only when you
specify bounds on the linear system).

In Assertion tab:

• Enable assertion
• Simulation callback when assertion

fails (optional)
• Stop simulation when assertion fails
• Output assertion signal

Save linear system to MATLAB
workspace.

Save data to workspace in Logging tab.

View bounds violations graphically in a
plot window.

Show Plot

Display plot window instead of block
parameters dialog box on double-clicking
the block.

Show plot on block open
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See Also

Nichols Plot

Tutorials

• “Model Verification at Default Simulation Snapshot Time” on page 5-6
• “Model Verification at Multiple Simulation Snapshots” on page 5-15
• “Model Verification Using Simulink Control Design and Simulink Verification Blocks”

on page 5-25
• Verifying Frequency-Domain Characteristics of an Aircraft

How To

“Monitoring Linear System Characteristics in Simulink Models” on page 5-2
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Check Pole-Zero Characteristics
Check that bounds on pole locations are satisfied during simulation

Library

Simulink Control Design

Description

This block is same as the Pole-Zero Plot block except for different default parameter
settings in the Bounds tab.

Check that approximate second-order bounds on the pole locations of a linear system,
computed from a nonlinear Simulink model, are satisfied during simulation.

The Simulink model can be continuous-time, discrete-time or multirate and can have
time delays. Because you can specify only one linearization input/output pair in this
block, the linear system is Single-Input Single-Output (SISO).

During simulation, the software linearizes the portion of the model between specified
linearization inputs and outputs, computes the poles and zeros, and checks that the poles
satisfy the specified bounds:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts, and a warning message appears at the

MATLAB prompt. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal:

• If all bounds are satisfied, the signal is true (1).
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• If a bound is not satisfied, the signal is false (0).

You can add multiple Check Pole-Zero Characteristics blocks in your model to check
approximate second-order bounds on various portions of the model.

You can also plot the poles and zeros on a pole-zero map and graphically verify that the
poles satisfy the bounds.

This block and the other Model Verification blocks test that the linearized behavior of a
nonlinear Simulink model is within specified bounds during simulation.

• When a model does not violate any bound, you can disable the block by clearing the
assertion option. If you modify the model, you can re-enable assertion to ensure that
your changes do not cause the model to violate a bound.

• When a model violates any bound, you can use Simulink Design Optimization
software to optimize the linear system to meet the specified requirements in this
block.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation
mode.

Parameters
The following table summarizes the Pole-Zero Plot block parameters, accessible via the
block parameter dialog box. For more information, see “Parameters” on page 7-176 in
the Pole-Zero Plot block reference page.

Task Parameters

Specify inputs and
outputs (I/Os).

In Linearizations tab:

• Linearization inputs/outputs
• Click a model signal to add it as a

linearization I/O

Configure
linearization.

Specify settings. In Linearizations tab:

• Linearize on
• Snapshot times
• Trigger type
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Task Parameters

Specify algorithm
options.

In Linearizations tab:

• Enable zero-crossing detection
• Use exact delays
• Linear system sample time
• Sample time rate conversion method
• Prewarp frequency (rad/s)

Specify labels for
linear system I/Os
and state names.

In Linearizations tab:

• Use full block names
• Use bus signal names

Specify bounds on the linear system for
assertion.

In Bounds tab:

• Include settling time bound in
assertion

• Include percent overshoot bound in
assertion

• Include damping ratio bound in
assertion

• Include natural frequency bound in
assertion

Specify assertion options (only when you
specify bounds on the linear system).

In Assertion tab:

• Enable assertion
• Simulation callback when assertion

fails (optional)
• Stop simulation when assertion fails
• Output assertion signal

Save linear system to MATLAB
workspace.

Save data to workspace in Logging tab.

View bounds violations graphically in a
plot window.

Show Plot
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Task Parameters

Display plot window instead of block
parameters dialog box on double-clicking
the block.

Show plot on block open

See Also

Pole-Zero Plot

Tutorials

• “Model Verification at Default Simulation Snapshot Time” on page 5-6
• “Model Verification at Multiple Simulation Snapshots” on page 5-15
• “Model Verification Using Simulink Control Design and Simulink Verification Blocks”

on page 5-25
• Verifying Frequency-Domain Characteristics of an Aircraft

How To

“Monitoring Linear System Characteristics in Simulink Models” on page 5-2
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Check Singular Value Characteristics
Check that singular value bounds are satisfied during simulation

Library

Simulink Control Design

Description

This block is same as the Singular Value Plot block except for default parameter settings
in the Bounds tab:

Check that upper and lower bounds on singular values of a linear system, computed from
a nonlinear Simulink model, are satisfied during simulation.

The Simulink model can be continuous-time, discrete-time or multi-rate and can have
time delays. The computed linear system can be Single-Input Single-Output (SISO) or
Multi-Input Multi-Output (MIMO).

During simulation, the software linearizes the portion of the model between specified
linearization input and output, computes the singular values, and checks that the values
satisfy the specified bounds:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts, and a warning message appears at the

MATLAB prompt. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal:

• If all bounds are satisfied, the signal is true (1).
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• If a bound is not satisfied, the signal is false (0).

For MIMO systems, the bounds apply to the singular values computed for all input/
output combinations.

You can add multiple Check Singular Value Characteristics blocks in your model to check
upper and lower singular value bounds on various portions of the model.

You can also plot the singular values on a singular value plot and graphically verify that
the values satisfy the bounds.

This block and the other Model Verification blocks test that the linearized behavior of a
nonlinear Simulink model is within specified bounds during simulation.

• When a model does not violate any bound, you can disable the block by clearing the
assertion option. If you modify the model, you can re-enable assertion to ensure that
your changes do not cause the model to violate a bound.

• When a model violates any bound, you can use Simulink Design Optimization
software to optimize the linear system to meet the specified requirements in this
block.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation
mode.

Parameters

The following table summarizes the Singular Value Plot block parameters, accessible via
the block parameter dialog box. For more information, see “Parameters” on page 7-217
in the Singular Value Plot block reference page.

Task Parameters

Specify inputs and
outputs (I/Os).

In Linearizations tab:

• Linearization inputs/outputs
• Click a model signal to add it as a

linearization I/O

Configure
linearization.

Specify settings. In Linearizations tab:
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Task Parameters

• Linearize on
• Snapshot times
• Trigger type

Specify algorithm
options.

In Linearizations tab:

• Enable zero-crossing detection
• Use exact delays
• Linear system sample time
• Sample time rate conversion method
• Prewarp frequency (rad/s)

Specify labels for
linear system I/Os
and state names.

In Linearizations tab:

• Use full block names
• Use bus signal names

Specify bounds on the linear system for
assertion.

In Bounds tab:

• Include upper singular value bound
in assertion

• Include lower singular value bound
in assertion

Specify assertion options (only when you
specify bounds on the linear system).

In Assertion tab:

• Enable assertion
• Simulation callback when assertion

fails (optional)
• Stop simulation when assertion fails
• Output assertion signal

Save linear system to MATLAB
workspace.

Save data to workspace in Logging tab.

View bounds violations graphically in a
plot window.

Show Plot
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Task Parameters

Display plot window instead of block
parameters dialog box on double-clicking
the block.

Show plot on block open

See Also

Singular Value Plot

Tutorials

• “Model Verification at Default Simulation Snapshot Time” on page 5-6
• “Model Verification at Multiple Simulation Snapshots” on page 5-15
• “Model Verification Using Simulink Control Design and Simulink Verification Blocks”

on page 5-25
• Verifying Frequency-Domain Characteristics of an Aircraft

How To

“Monitoring Linear System Characteristics in Simulink Models” on page 5-2
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Gain and Phase Margin Plot
Gain and phase margins of linear system approximated from nonlinear Simulink model

Library

Simulink Control Design

Description 

This block is same as the Check Gain and Phase Margins block except for different
default parameter settings in the Bounds tab.

Compute a linear system from a nonlinear Simulink model and view the gain and phase
margins on a Bode, Nichols or Nyquist plot. Alternatively, you can view the margins in a
table. By default, the margins are computed using negative feedback for the closed-loop
system.

During simulation, the software linearizes the portion of the model between specified
linearization inputs and outputs, and plots the linear system on the specified plot type.

The Simulink model can be continuous- or discrete-time or multirate and can have time
delays. Because you can specify only one linearization input/output pair in this block, the
linear system is Single-Input Single-Output (SISO).

You can specify only one gain and phase margin bound each and view them on the
selected plot or table. The block does not support multiple gain and phase margin
bounds. You can also check that the bounds are satisfied during simulation:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts, and a warning message appears at the

MATLAB prompt. You can also specify that the block:

• Evaluate a MATLAB expression.
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• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal:

• If all bounds are satisfied, the signal is true (1).
• If a bound is not satisfied, the signal is false (0).

You can add multiple Gain and Phase Margin Plot blocks to compute and plot the gain
and phase margins of various portions of the model.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation
mode.

Parameters

The following table summarizes the Gain and Phase Margin Plot block parameters,
accessible via the block parameter dialog box.

Task Parameters

Specify inputs and outputs
(I/Os).

In Linearizations tab:

• “Linearization inputs/
outputs” on page 7-5.

• “Click a signal in the
model to select it” on page
7-7.

Specify settings. In Linearizations tab:

• “Linearize on” on page
7-10.

• “Snapshot times” on page
7-11.

• “Trigger type” on page
7-11.

Configure linearization.

Specify algorithm options. In Algorithm Options of
Linearizations tab:
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Task Parameters

• “Enable zero-crossing
detection” on page 7-12.

• “Use exact delays” on
page 7-14.

• “Linear system sample
time” on page 7-14.

• “Sample time rate
conversion method” on
page 7-16.

• “Prewarp frequency (rad/
s)” on page 7-17.

Specify labels for linear
system I/Os and state
names.

In Labels of
Linearizations tab:

• “Use full block names” on
page 7-18.

• “Use bus signal names”
on page 7-19.

Specify plot type for viewing gain and phase margins. “Plot type” on page 7-94.
Plot the linear system. Show Plot
Specify the feedback sign for closed-loop gain and phase
margins.

“Feedback sign” on page
7-85 in Bounds tab.

(Optional) Specify bounds on gain and phase margins of
the linear system for assertion.

“Include gain and phase
margins in assertion” on
page 7-82 in Bounds tab.
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Task Parameters

Specify assertion options (only when you specify bounds
on the linear system).

In Assertion tab:

• “Enable assertion” on
page 7-31.

• “Simulation callback
when assertion fails
(optional)” on page 7-33.

• “Stop simulation when
assertion fails” on page
7-33.

• “Output assertion signal”
on page 7-34.

Save linear system to MATLAB workspace. “Save data to workspace” on
page 7-28 in Logging tab.

Display plot window instead of block parameters dialog
box on double-clicking the block.

“Show plot on block open” on
page 7-35.

Linearization inputs/outputs

Linearization inputs and outputs that define the portion of a nonlinear Simulink model
to linearize

.If you have defined the linearization input and output in the Simulink model, the block
automatically detects these points and displays them in the Linearization inputs/

outputs area. Click  at any time to update the Linearization inputs/outputs table
with I/Os from the model. To add other analysis points:

1

Click .

The dialog box expands to display a Click a signal in the model to select it area

and a new  button.
2 Select one or more signals in the Simulink Editor.
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The selected signals appear under Model signal in the Click a signal in the
model to select it area.

3 (Optional) For buses, expand the bus signal to select individual elements.

Tip For large buses or other large lists of signals, you can enter search text for
filtering element names in the Filter by name edit box. The name match is case-
sensitive. Additionally, you can enter MATLAB “regular expression”.

To modify the filtering options, click .

Filtering Options

• “Enable regular expression” on page 7-8

• “Show filtered results as a flat list” on page 7-9
4

Click  to add the selected signals to the Linearization inputs/outputs table.
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Tip To find the location in the Simulink model corresponding to a signal in the

Linearization inputs/outputs table, select the signal in the table and click .

The table displays the following information about the selected signal:

Block : Port : Bus Element Name of the block associated with the input/output. The number
adjacent to the block name is the port number where the selected
bus signal is located. The last entry is the selected bus element
name.

Configuration Type of linearization point:

• Open-loop Input — Specifies a linearization input point after
a loop opening.

• Open-loop Output — Specifies a linearization output point
before a loop opening.

• Loop Transfer — Specifies an output point before a loop
opening followed by an input.

• Input Perturbation — Specifies an additive input to a
signal.

• Output Measurement — Takes measurement at a signal.
• Loop Break — Specifies a loop opening.
• Sensitivity — Specifies an additive input followed by an

output measurement.
• Complementary Sensitivity — Specifies an output followed

by an additive input.

Note: If you simulate the model without specifying an input or output, the software
does not compute a linear system. Instead, you see a warning message at the MATLAB
prompt.

Settings

No default
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Command-Line Information

Use getlinio and setlinio to specify linearization inputs and outputs.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Click a signal in the model to select it

Enables signal selection in the Simulink model. Appears only when you click .

When this option appears, you also see the following changes:

•
A new  button.

Use to add a selected signal as a linearization input or output in the Linearization
inputs/outputs table. For more information, see Linearization inputs/outputs.

•
 changes to .

Use to collapse the Click a signal in the model to select it area.

Settings

No default

Command-Line Information

Use the getlinio and setlinio commands to select signals as linearization inputs and
outputs.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”
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“Model Verification at Default Simulation Snapshot Time” on page 5-6

Enable regular expression

Enable the use of MATLAB regular expressions for filtering signal names. For example,
entering t$ in the Filter by name edit box displays all signals whose names end with a
lowercase t (and their immediate parents). For details, see “Regular Expressions”.

Settings

Default: On

 On
Allow use of MATLAB regular expressions for filtering signal names.

 Off
Disable use of MATLAB regular expressions for filtering signal names. Filtering
treats the text you enter in the Filter by name edit box as a literal string.

Dependencies

Selecting the Options button on the right-hand side of the Filter by name edit box ( )
enables this parameter.

Show filtered results as a flat list

Uses a flat list format to display the list of filtered signals, based on the search text in the
Filter by name edit box. The flat list format uses dot notation to reflect the hierarchy
of bus signals. The following is an example of a flat list format for a filtered set of nested
bus signals.
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Settings

Default: Off

 On
Display the filtered list of signals using a flat list format, indicating bus hierarchies
with dot notation instead of using a tree format.

 Off
Display filtered bus hierarchies using a tree format.

Dependencies

Selecting the Options button on the right-hand side of the Filter by name edit box ( )
enables this parameter.

Linearize on

When to compute the linear system during simulation.

Settings

Default: Simulation snapshots
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Simulation snapshots

Specific simulation time, specified in Snapshot times.

Use when you:

• Know one or more times when the model is at steady-state operating point
• Want to compute the linear systems at specific times

External trigger

Trigger-based simulation event. Specify the trigger type in Trigger type.

Use when a signal generated during simulation indicates steady-state operating
point.

Selecting this option adds a trigger port to the block. Use this port to connect the
block to the trigger signal.

For example, for an aircraft model, you might want to compute the linear system
whenever the fuel mass is a fraction of the maximum fuel mass. In this case, model
this condition as an external trigger.

Dependencies

• Setting this parameter to Simulation snapshots enables Snapshot times.
• Setting this parameter to External trigger enables Trigger type.

Command-Line Information
Parameter: LinearizeAt
Type: string
Value: 'SnapshotTimes' | 'ExternalTrigger'
Default: 'SnapshotTimes'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Snapshot times

One or more simulation times. The linear system is computed at these times.
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Settings

Default: 0

• For a different simulation time, enter the time. Use when you:

• Want to plot the linear system at a specific time
• Know the approximate time when the model reaches steady-state operating point

• For multiple simulation times, enter a vector. Use when you want to compute and plot
linear systems at multiple times.

Snapshot times must be less than or equal to the simulation time specified in the
Simulink model.

Dependencies

Selecting Simulation snapshots in Linearize on enables this parameter.

Command-Line Information
Parameter: SnapshotTimes
Type: string
Value: 0 | positive real number | vector of positive real numbers
Default: 0

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Trigger type

Trigger type of an external trigger for computing linear system.

Settings

Default: Rising edge

Rising edge

Rising edge of the external trigger signal.
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Falling edge

Falling edge of the external trigger signal.

Dependencies

Selecting External trigger in Linearize on enables this parameter.

Command-Line Information
Parameter: TriggerType
Type: string
Value: 'rising' | 'falling'
Default: 'rising'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Enable zero-crossing detection

Enable zero-crossing detection to ensure that the software computes the linear system
characteristics at the following simulation times:

• The exact snapshot times, specified in Snapshot times.

As shown in the following figure, when zero-crossing detection is enabled, the
variable-step Simulink solver simulates the model at the snapshot time Tsnap. Tsnap
may lie between the simulation time steps Tn-1 and Tn which are automatically chosen
by the solver.

Computes linear system
characteristics at this time point

TimeTn-1 TnTsnap

• The exact times when an external trigger is detected, specified in Trigger type.

As shown in the following figure, when zero-crossing detection is enabled, the
variable-step Simulink solver simulates the model at the time, Ttrig, when the trigger
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signal is detected. Ttrig may lie between the simulation time steps Tn-1 and Tn which
are automatically chosen by the solver.

Computes linear system
characteristics at this time point

Time

Amplitude

1

0
Tn-1

Tn
Ttrig

Trigger signal

For more information on zero-crossing detection, see “Zero-Crossing Detection” in the
Simulink User Guide.

Settings

Default: On

 On
Compute linear system characteristics at the exact snapshot time or exact time when
a trigger signal is detected.

This setting is ignored if the Simulink solver is fixed step.

 Off
Compute linear system characteristics at the simulation time steps that the variable-
step solver chooses. The software may not compute the linear system at the exact
snapshot time or exact time when a trigger signal is detected.

Command-Line Information
Parameter: ZeroCross
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6
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Use exact delays

How to represent time delays in your linear model.

Use this option if you have blocks in your model that have time delays.

Settings

Default: Off

 On
Return a linear model with exact delay representations.

 Off
Return a linear model with Padé approximations of delays, as specified in your
Transport Delay and Variable Transport Delay blocks.

Command-Line Information
Parameter: UseExactDelayModel
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Linear system sample time

Sample time of the linear system computed during simulation.

Use this parameter to:

• Compute a discrete-time system with a specific sample time from a continuous-time
system

• Resample a discrete-time system with a different sample time
• Compute a continuous-time system from a discrete-time system
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When computing discrete-time systems from continuous-time systems and vice-versa,
the software uses the conversion method specified in Sample time rate conversion
method.

Settings

Default: auto

auto. Computes the sample time as:

• 0, for continuous-time models.
• For models that have blocks with different sample times (multi-rate models),

least common multiple of the sample times. For example, if you have a mix of
continuous-time and discrete-time blocks with sample times of 0, 0.2 and 0.3, the
sample time of the linear model is 0.6.

Positive finite value. Use to compute:

• A discrete-time linear system from a continuous-time system.
• A discrete-time linear system from another discrete-time system with a different

sample time

0

Use to compute a continuous-time linear system from a discrete-time model.

Command-Line Information
Parameter: SampleTime
Type: string
Value: auto | Positive finite value | 0
Default: auto

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Sample time rate conversion method

Method for converting the sample time of single- or multi-rate models.

This parameter is used only when the value of Linear system sample time is not auto.
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Settings

Default: Zero-Order Hold

Zero-Order Hold

Zero-order hold, where the control inputs are assumed piecewise constant over the
sampling time Ts. For more information, see “Zero-Order Hold” in Control System
Toolbox User's Guide.

This method usually performs better in time domain.
Tustin (bilinear)

Bilinear (Tustin) approximation without frequency prewarping. The software rounds
off fractional time delays to the nearest multiple of the sampling time. For more
information, see “Tustin Approximation” in Control System Toolbox User's Guide.

This method usually perform better in the frequency domain.
Tustin with Prewarping

Bilinear (Tustin) approximation with frequency prewarping. Also specify the prewarp
frequency in Prewarp frequency (rad/s). For more information, see “Tustin
Approximation” in Control System Toolbox User's Guide.

This method usually perform better in the frequency domain. Use this method to
ensure matching at frequency region of interest.

Upsampling when possible, Zero-Order Hold otherwise

Upsample a discrete-time system when possible and use Zero-Order Hold
otherwise.

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Upsampling when possible, Tustin otherwise

Upsample a discrete-time system when possible and use Tustin (bilinear)
otherwise.

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Upsampling when possible, Tustin with Prewarping otherwise

Upsample a discrete-time system when possible and use Tustin with Prewarping
otherwise. Also, specify the prewarp frequency in Prewarp frequency (rad/s).
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You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Dependencies

Selecting either:

• Tustin with Prewarping

• Upsampling when possible, Tustin with Prewarping otherwise

enables Prewarp frequency (rad/s).

Command-Line Information
Parameter: RateConversionMethod
Type: string
Value: 'zoh' | 'tustin' | 'prewarp'| 'upsampling_zoh'|
'upsampling_tustin'| 'upsampling_prewarp'
Default: 'zoh'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Prewarp frequency (rad/s)

Prewarp frequency for Tustin method, specified in radians/second.

Settings

Default: 10

Positive scalar value, smaller than the Nyquist frequency before and after resampling. A
value of 0 corresponds to the standard Tustin method without frequency prewarping.

Dependencies

Selecting either

• Tustin with Prewarping
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• Upsampling when possible, Tustin with Prewarping otherwise

in Sample time rate conversion method enables this parameter.

Command-Line Information
Parameter: PreWarpFreq
Type: string
Value: 10 | positive scalar value
Default: 10

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Use full block names

How the state, input and output names appear in the linear system computed during
simulation.

The linear system is a state-space object and system states and input/output names
appear in following state-space object properties:

Input, Output or State Name Appears in Which State-Space Object Property

Linearization input name InputName

Linearization output name OutputName

State names StateName

Settings

Default: Off

 On
Show state and input/output names with their path through the model hierarchy.
For example, in the chemical reactor model, a state in the Integrator1 block of the
CSTR subsystem appears with full path as scdcstr/CSTR/Integrator1.

 Off
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Show only state and input/output names. Use this option when the signal name
is unique and you know where the signal is location in your Simulink model. For
example, a state in the Integrator1 block of the CSTR subsystem appears as
Integrator1.

Command-Line Information
Parameter: UseFullBlockNameLabels
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Use bus signal names

How to label signals associated with linearization inputs and outputs on buses, in the
linear system computed during simulation (applies only when you select an entire bus as
an I/O point).

Selecting an entire bus signal is not recommended. Instead, select individual bus
elements.

You cannot use this parameter when your model has mux/bus mixtures.

Settings

Default: Off

 On
Use the signal names of the individual bus elements.

Bus signal names appear when the input and output are at the output of the
following blocks:

• Root-level inport block containing a bus object
• Bus creator block



7 Blocks — Alphabetical List

7-82

• Subsystem block whose source traces back to one of the following blocks:

• Output of a bus creator block
• Root-level inport block by passing through only virtual or nonvirtual

subsystem boundaries

 Off
Use the bus signal channel number.

Command-Line Information
Parameter: UseBusSignalLabels
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Include gain and phase margins in assertion

Check that the gain and phase margins are greater than the values specified in Gain
margin (dB) > and Phase margin (deg) >, during simulation. The software displays a
warning if the gain or phase margin is less than or equals the specified value.

By default, negative feedback, specified in Feedback sign, is used to compute the
margins.

This parameter is used for assertion only if Enable assertion in the Assertion tab is
selected.

You can view the gain and phase margin bound on one of the following plot types:

• Bode
• Nichols
• Nyquist
• Table
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If you clear Enable assertion, the bounds are not used for assertion but continue to
appear on the plot.

Settings

Default:

• Off for Gain and Phase Margin Plot block.
• On for Check Gain and Phase Margins block.

 On
Check that the gain and phase margins satisfy the specified values, during
simulation.

 Off
Do not check that the gain and phase margins satisfy the specified values, during
simulation.

Tips

• Clearing this parameter disables the gain and phase margin bounds and the software
stops checking that the gain and phase margins satisfy the bounds during simulation.
The gain and phase margin bounds are also disabled on the plot.

• To only view the gain and phase margin on the plot, clear Enable assertion.

Command-Line Information
Parameter: EnableMargins
Type: string
Value: 'on' | 'off'
Default: 'off' for Gain and Phase Margin Plot block, 'on' for Check Gain and Phase
Margins block

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Gain margin (dB) >

Gain margin, specified in decibels.
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By default, negative feedback, specified in Feedback sign, is used to compute the gain
margin.

You can specify only one gain margin bound on the linear system in this block.

Settings

Default:
[] for Gain and Phase Margin Plot block.
20 for Check Gain and Phase Margins block.

Positive finite number.

Tips

• To assert that the gain margin is satisfied, select both Include gain and phase
margins in assertion and Enable assertion.

• To modify the gain margin from the plot window, right-click the plot, and select
Bounds > Edit Bound. Specify the new gain margin in Gain margin >. You must
click Update Block before simulating the model.

Command-Line Information
Parameter: GainMargin
Type: string
Value: [] | 20 | positive finite number. Must be specified inside single quotes
('').
Default: '[]' for Gain and Phase Margin Plot block, '20' for Check Gain and Phase
Margins block.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Phase margin (deg) >

Phase margin, specified in degrees.

By default, negative feedback, specified in Feedback sign, is used to compute the phase
margin.
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You can specify only one phase margin bound on the linear system in this block.

Settings

Default:
[] for Gain and Phase Margin Plot block.
30 for Check Gain and Phase Margins block.

Positive finite number.

Tips

• To assert that the phase margin is satisfied, select both Include gain and phase
margins in assertion and Enable assertion.

• To modify the phase margin from the plot window, right-click the plot, and select
Bounds > Edit Bound. Specify the new phase margin in Phase margin >. You
must click Update Block before simulating the model.

Command-Line Information
Parameter: PhaseMargin
Type: string
Value: [] | 30 | positive finite number. Must be specified inside single quotes
('').
Default: '[]' for Gain and Phase Margin Plot block, '30' for Check Gain and Phase
Margins block.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Feedback sign

Feedback sign to determine the gain and phase margins of the linear system, computed
during simulation.

To determine the feedback sign, check if the path defined by the linearization inputs and
outputs include the feedback Sum block:

• If the path includes the Sum block, specify positive feedback.
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• If the path does not include the Sum block, specify the same feedback sign as the Sum
block.

For example, in the aircraft model, the Check Gain and Phase Margins block includes the
negative sign in the summation block. Therefore, the Feedback sign is positive.

Settings

Default: negative feedback

negative feedback

Use when the path defined by the linearization inputs/outputs does not include the
Sum block and the Sum block feedback sign is -.

positive feedback

Use when:

• The path defined by the linearization inputs/outputs includes the Sum block.
• The path defined by the linearization inputs/outputs does not include the Sum

block and the Sum block feedback sign is +.

Command-Line Information
Parameter: FeedbackSign
Type: string
Value: '-1' | '+1'
Default: '-1'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Save data to workspace

Save one or more linear systems to perform further linear analysis or control design.

The saved data is in a structure whose fields include:

• time — Simulation times at which the linear systems are computed.
• values — State-space model representing the linear system. If the linear system is

computed at multiple simulation times, values is an array of state-space models.
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• operatingPoints — Operating points corresponding to each linear system in
values. This field exists only if Save operating points for each linearization is
checked.

The location of the saved data structure depends upon the configuration of the Simulink
model:

• If the Simulink model is not configured to save simulation output as a single object,
the data structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the
data structure is a field in the Simulink.SimulationOutput object that contains
the logged simulation data.

To configure your model to save simulation output in a single object, in the
Simulink editor, select Simulation > Model Configuration Parameters. In the
Configuration Parameters dialog box, in the Data Import/Export pane, check Save
Simulation output as single object.

For more information about data logging in Simulink, see “Export Simulation Data” and
the “Simulink.SimulationOutput class” reference page.

Settings

Default: Off

 On
Save the computed linear system.

 Off
Do not save the computed linear system.

Dependencies

This parameter enables Variable name.

Command-Line Information
Parameter: SaveToWorkspace
Type: string
Value: 'on' | 'off'
Default: 'off'
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See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Variable name

Name of the data structure that stores one or more linear systems computed during
simulation.

The location of the saved data structure depends upon the configuration of the Simulink
model:

• If the Simulink model is not configured to save simulation output as a single object,
the data structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the
data structure is a field in the Simulink.SimulationOutput object that contains
the logged simulation data. The

The name must be unique among the variable names used in all data logging model
blocks, such as Linear Analysis Plot blocks, Model Verification blocks, Scope blocks, To
Workspace blocks, and simulation return variables such as time, states, and outputs.

For more information about data logging in Simulink, see “Export Simulation Data” and
the “Simulink.SimulationOutput class” reference page.

Settings

Default: sys

String.

Dependencies

Save data to workspace enables this parameter.

Command-Line Information
Parameter: SaveName
Type: string
Value: sys | any string. Must be specified inside single quotes ('').
Default: 'sys'
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See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Save operating points for each linearization

When saving linear systems to the workspace for further analysis or control design, also
save the operating point corresponding to each linearization. Using this option adds
a field named operatingPoints to the data structure that stores the saved linear
systems.

Settings

Default: Off

 On
Save the operating points.

 Off
Do not save the operating points.

Dependencies

Save data to workspace enables this parameter.

Command-Line Information
Parameter: SaveOperatingPoint
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Enable assertion
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Enable the block to check that bounds specified and included for assertion in the Bounds
tab are satisfied during simulation. Assertion fails if a bound is not satisfied. A warning,
reporting the assertion failure, appears at the MATLAB prompt.

If assertion fails, you can optionally specify that the block:

• Execute a MATLAB expression, specified in Simulation callback when assertion
fails (optional).

• Stop the simulation and bring that block into focus, by selecting Stop simulation
when assertion fails.

For the Linear Analysis Plots blocks, this parameter has no effect because no
bounds are included by default. If you want to use the Linear Analysis Plots blocks
for assertion, specify and include bounds in the Bounds tab.

Clearing this parameter disables assertion, i.e., the block no longer checks that specified
bounds are satisfied. The block icon also updates to indicate that assertion is disabled.

In the Configuration Parameters dialog box of the Simulink model, the Model
Verification block enabling option in the Debugging area of Data Validity node,
lets you to enable or disable all model verification blocks in a model, regardless of the
setting of this option.

Settings

Default: On

 On
Check that bounds included for assertion in the Bounds tab are satisfied during
simulation. A warning, reporting assertion failure, is displayed at the MATLAB
prompt if bounds are violated.

 Off
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Do not check that bounds included for assertion are satisfied during simulation.

Dependencies

This parameter enables:

• Simulation callback when assertion fails (optional)
• Stop simulation when assertion fails

Command-Line Information
Parameter: enabled
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Simulation callback when assertion fails (optional)

MATLAB expression to execute when assertion fails.

Because the expression is evaluated in the MATLAB workspace, define all variables used
in the expression in that workspace.

Settings

No Default

A MATLAB expression.

Dependencies

Enable assertion enables this parameter.

Command-Line Information
Parameter: callback
Type: string
Value: '' | MATLAB expression
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Default: ''

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Stop simulation when assertion fails

Stop the simulation when a bound specified in the Bounds tab is violated during
simulation, i.e., assertion fails.

If you run the simulation from the Simulink Editor, the Simulation Diagnostics window
opens to display an error message. Also, the block where the bound violation occurs is
highlighted in the model.

Settings

Default: Off

 On
Stop simulation if a bound specified in the Bounds tab is violated.

 Off
Continue simulation if a bound is violated with a warning message at the MATLAB
prompt.

Tips

• Because selecting this option stops the simulation as soon as the assertion fails,
assertion failures that might occur later during the simulation are not reported. If you
want all assertion failures to be reported, do not select this option.

Dependencies

Enable assertion enables this parameter.

Command-Line Information
Parameter: stopWhenAssertionFail
Type: string
Value: 'on' | 'off'
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Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Output assertion signal

Output a Boolean signal that, at each time step, is:

• True (1) if assertion succeeds, i.e., all bounds are satisfied
• False (1) if assertion fails, i.e., a bound is violated.

The output signal data type is Boolean only if the Implement logic signals as Boolean
data option in the Optimization pane of the Configuration Parameters dialog box of the
Simulink model is selected. Otherwise, the data type of the output signal is double.

Selecting this parameter adds an output port to the block that you can connect to any
block in the model.

Settings

Default:Off

 On
Output a Boolean signal to indicate assertion status. Adds a port to the block.

 Off
Do not output a Boolean signal to indicate assertion status.

Tips

• Use this parameter to design complex assertion logic. For an example, see “Model
Verification Using Simulink Control Design and Simulink Verification Blocks” on
page 5-25.

Command-Line Information
Parameter: export
Type: string
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Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Plot type

Plot to view gain and phase margins of the linear system computed during simulation.

Settings

Default: Bode

Bode

Bode plot.
Nichols

Nichols plot
Nyquist

Nyquist plot
Tabular

Table.

Right-click the Bode , Nichols or Nyquist plot and select Characteristics > Minimum
Stability Margins to view gain and phase margins. The table displays the computed
margins automatically.

Command-Line Information
Parameter: PlotType
Type: string
Value: 'bode' | 'nichols' | 'nyquist' | 'table'
Default: 'bode'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”
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“Model Verification at Default Simulation Snapshot Time” on page 5-6

Show plot on block open

Open the plot window instead of the Block Parameters dialog box when you double-click
the block in the Simulink model.

Use this parameter if you prefer to open and perform tasks, such as adding or modifying
bounds, in the plot window instead of the Block Parameters dialog box. If you want to

access the block parameters from the plot window, select Edit or click .

For more information on the plot, see Show Plot.

Settings

Default: Off

 On
Open the plot window when you double-click the block.

 Off
Open the Block Parameters dialog box when double-clicking the block.

Command-Line Information
Parameter: LaunchViewOnOpen
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Show Plot

Open the plot window.
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Use the plot to view:

• Linear system characteristics computed from the nonlinear Simulink model during
simulation

You must click this button before you simulate the model to view the linear
characteristics.

You can display additional characteristics, such as the peak response time and
stability margins, of the linear system by right-clicking the plot and selecting
Characteristics.

• Bounds on the linear system characteristics

You can specify bounds in the Bounds tab of the Block Parameters dialog box or
right-click the plot and select Bounds > New Bound. For more information on
the types of bounds you can specify on each plot, see “Verifiable Linear System
Characteristics” on page 5-5 in the User's Guide.

You can modify bounds by dragging the bound segment or by right-clicking the plot
and selecting Bounds > Edit Bound. Before you simulate the model, click Update
Block to update the bound value in the block parameters.

Typical tasks that you perform in the plot window include:

•
Opening the Block Parameters dialog box by clicking  or selecting Edit.

•
Finding the block that the plot window corresponds to by clicking  or selecting
View > Highlight Simulink Block. This action makes the Simulink Editor active
and highlights the block.

• Simulating the model by clicking  or selecting Simulation > Run. This action
also linearizes the portion of the model between the specified linearization input and
output.

•
Adding legend on the linear system characteristic plot by clicking .

See Also

Check Gain and Phase Margins
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Tutorials

• “Visualize Bode Response of Simulink Model During Simulation” on page 2-53
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-74
• “Visualize Linear System of a Continuous-Time Model Discretized During Simulation”

on page 2-81
• Plotting Linear System Characteristics of a Chemical Reactor
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Linear Step Response Plot
Step response of linear system approximated from nonlinear Simulink model

Library

Simulink Control Design

Description

This block is same as the Check Linear Step Response Characteristics block except for
different default parameter settings in the Bounds tab.

Compute a linear system from a nonlinear Simulink model and plot the linear step
response.

During simulation, the software linearizes the portion of the model between specified
linearization inputs and outputs, and plots the step response of the linear system.

The Simulink model can be continuous- or discrete-time or multirate and can have time
delays. Because you can specify only one linearization input/output pair in this block, the
linear system is Single-Input Single-Output (SISO).

You can specify step response bounds and view them on the plot. You can also check that
the bounds are satisfied during simulation:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts, and a warning message appears at the

MATLAB prompt. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal:
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• If all bounds are satisfied, the signal is true (1).
• If a bound is not satisfied, the signal is false (0).

You can add multiple Linear Step Response Plot blocks to compute and plot the linear
step response of various portions of the model.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation
mode.

Parameters

The following table summarizes the Linear Step Response Plot block parameters,
accessible via the block parameter dialog box.

Task Parameters

Specify inputs and outputs
(I/Os).

In Linearizations tab:

• “Linearization inputs/
outputs” on page 7-5.

• “Click a signal in the
model to select it” on page
7-7.

Specify settings. In Linearizations tab:

• “Linearize on” on page
7-10.

• “Snapshot times” on page
7-11.

• “Trigger type” on page
7-11.

Configure linearization.

Specify algorithm options. In Algorithm Options of
Linearizations tab:

• “Enable zero-crossing
detection” on page 7-12.
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Task Parameters

• “Use exact delays” on
page 7-14.

• “Linear system sample
time” on page 7-14.

• “Sample time rate
conversion method” on
page 7-16.

• “Prewarp frequency (rad/
s)” on page 7-17.

Specify labels for linear
system I/Os and state
names.

In Labels of
Linearizations tab:

• “Use full block names” on
page 7-18.

• “Use bus signal names”
on page 7-19.

Plot the linear system. Show Plot
(Optional) Specify bounds on step response of the linear
system for assertion.

Include step response bound
in assertion in Bounds tab.

Specify assertion options (only when you specify bounds
on the linear system).

In Assertion tab:

• “Enable assertion” on
page 7-31.

• “Simulation callback
when assertion fails
(optional)” on page 7-33.

• “Stop simulation when
assertion fails” on page
7-33.

• “Output assertion signal”
on page 7-34.

Save linear system to MATLAB workspace. “Save data to workspace” on
page 7-28 in Logging tab.
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Task Parameters

Display plot window instead of block parameters dialog
box on double-clicking the block.

“Show plot on block open” on
page 7-35.

Linearization inputs/outputs

Linearization inputs and outputs that define the portion of a nonlinear Simulink model
to linearize

.If you have defined the linearization input and output in the Simulink model, the block
automatically detects these points and displays them in the Linearization inputs/

outputs area. Click  at any time to update the Linearization inputs/outputs table
with I/Os from the model. To add other analysis points:

1

Click .

The dialog box expands to display a Click a signal in the model to select it area

and a new  button.
2 Select one or more signals in the Simulink Editor.

The selected signals appear under Model signal in the Click a signal in the
model to select it area.

3 (Optional) For buses, expand the bus signal to select individual elements.

Tip For large buses or other large lists of signals, you can enter search text for
filtering element names in the Filter by name edit box. The name match is case-
sensitive. Additionally, you can enter MATLAB “regular expression”.
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To modify the filtering options, click .

Filtering Options

• “Enable regular expression” on page 7-8

• “Show filtered results as a flat list” on page 7-9
4

Click  to add the selected signals to the Linearization inputs/outputs table.

Tip To find the location in the Simulink model corresponding to a signal in the

Linearization inputs/outputs table, select the signal in the table and click .

The table displays the following information about the selected signal:

Block : Port : Bus Element Name of the block associated with the input/output. The number
adjacent to the block name is the port number where the selected
bus signal is located. The last entry is the selected bus element
name.

Configuration Type of linearization point:

• Open-loop Input — Specifies a linearization input point after
a loop opening.

• Open-loop Output — Specifies a linearization output point
before a loop opening.
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• Loop Transfer — Specifies an output point before a loop
opening followed by an input.

• Input Perturbation — Specifies an additive input to a
signal.

• Output Measurement — Takes measurement at a signal.
• Loop Break — Specifies a loop opening.
• Sensitivity — Specifies an additive input followed by an

output measurement.
• Complementary Sensitivity — Specifies an output followed

by an additive input.

Note: If you simulate the model without specifying an input or output, the software
does not compute a linear system. Instead, you see a warning message at the MATLAB
prompt.

Settings

No default

Command-Line Information

Use getlinio and setlinio to specify linearization inputs and outputs.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Click a signal in the model to select it

Enables signal selection in the Simulink model. Appears only when you click .

When this option appears, you also see the following changes:

•
A new  button.
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Use to add a selected signal as a linearization input or output in the Linearization
inputs/outputs table. For more information, see Linearization inputs/outputs.

•
 changes to .

Use to collapse the Click a signal in the model to select it area.

Settings

No default

Command-Line Information

Use the getlinio and setlinio commands to select signals as linearization inputs and
outputs.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Enable regular expression

Enable the use of MATLAB regular expressions for filtering signal names. For example,
entering t$ in the Filter by name edit box displays all signals whose names end with a
lowercase t (and their immediate parents). For details, see “Regular Expressions”.

Settings

Default: On

 On
Allow use of MATLAB regular expressions for filtering signal names.

 Off
Disable use of MATLAB regular expressions for filtering signal names. Filtering
treats the text you enter in the Filter by name edit box as a literal string.
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Dependencies

Selecting the Options button on the right-hand side of the Filter by name edit box ( )
enables this parameter.

Show filtered results as a flat list

Uses a flat list format to display the list of filtered signals, based on the search text in the
Filter by name edit box. The flat list format uses dot notation to reflect the hierarchy
of bus signals. The following is an example of a flat list format for a filtered set of nested
bus signals.

Settings

Default: Off

 On
Display the filtered list of signals using a flat list format, indicating bus hierarchies
with dot notation instead of using a tree format.

 Off
Display filtered bus hierarchies using a tree format.
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Dependencies

Selecting the Options button on the right-hand side of the Filter by name edit box ( )
enables this parameter.

Linearize on

When to compute the linear system during simulation.

Settings

Default: Simulation snapshots

Simulation snapshots

Specific simulation time, specified in Snapshot times.

Use when you:

• Know one or more times when the model is at steady-state operating point
• Want to compute the linear systems at specific times

External trigger

Trigger-based simulation event. Specify the trigger type in Trigger type.

Use when a signal generated during simulation indicates steady-state operating
point.

Selecting this option adds a trigger port to the block. Use this port to connect the
block to the trigger signal.

For example, for an aircraft model, you might want to compute the linear system
whenever the fuel mass is a fraction of the maximum fuel mass. In this case, model
this condition as an external trigger.

Dependencies

• Setting this parameter to Simulation snapshots enables Snapshot times.
• Setting this parameter to External trigger enables Trigger type.

Command-Line Information
Parameter: LinearizeAt
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Type: string
Value: 'SnapshotTimes' | 'ExternalTrigger'
Default: 'SnapshotTimes'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Snapshot times

One or more simulation times. The linear system is computed at these times.

Settings

Default: 0

• For a different simulation time, enter the time. Use when you:

• Want to plot the linear system at a specific time
• Know the approximate time when the model reaches steady-state operating point

• For multiple simulation times, enter a vector. Use when you want to compute and plot
linear systems at multiple times.

Snapshot times must be less than or equal to the simulation time specified in the
Simulink model.

Dependencies

Selecting Simulation snapshots in Linearize on enables this parameter.

Command-Line Information
Parameter: SnapshotTimes
Type: string
Value: 0 | positive real number | vector of positive real numbers
Default: 0

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6
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Trigger type

Trigger type of an external trigger for computing linear system.

Settings

Default: Rising edge

Rising edge

Rising edge of the external trigger signal.
Falling edge

Falling edge of the external trigger signal.

Dependencies

Selecting External trigger in Linearize on enables this parameter.

Command-Line Information
Parameter: TriggerType
Type: string
Value: 'rising' | 'falling'
Default: 'rising'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Enable zero-crossing detection

Enable zero-crossing detection to ensure that the software computes the linear system
characteristics at the following simulation times:

• The exact snapshot times, specified in Snapshot times.

As shown in the following figure, when zero-crossing detection is enabled, the
variable-step Simulink solver simulates the model at the snapshot time Tsnap. Tsnap
may lie between the simulation time steps Tn-1 and Tn which are automatically chosen
by the solver.
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Computes linear system
characteristics at this time point

TimeTn-1 TnTsnap

• The exact times when an external trigger is detected, specified in Trigger type.

As shown in the following figure, when zero-crossing detection is enabled, the
variable-step Simulink solver simulates the model at the time, Ttrig, when the trigger
signal is detected. Ttrig may lie between the simulation time steps Tn-1 and Tn which
are automatically chosen by the solver.

Computes linear system
characteristics at this time point

Time

Amplitude

1

0
Tn-1

Tn
Ttrig

Trigger signal

For more information on zero-crossing detection, see “Zero-Crossing Detection” in the
Simulink User Guide.

Settings

Default: On

 On
Compute linear system characteristics at the exact snapshot time or exact time when
a trigger signal is detected.

This setting is ignored if the Simulink solver is fixed step.

 Off
Compute linear system characteristics at the simulation time steps that the variable-
step solver chooses. The software may not compute the linear system at the exact
snapshot time or exact time when a trigger signal is detected.
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Command-Line Information
Parameter: ZeroCross
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Use exact delays

How to represent time delays in your linear model.

Use this option if you have blocks in your model that have time delays.

Settings

Default: Off

 On
Return a linear model with exact delay representations.

 Off
Return a linear model with Padé approximations of delays, as specified in your
Transport Delay and Variable Transport Delay blocks.

Command-Line Information
Parameter: UseExactDelayModel
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6
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Linear system sample time

Sample time of the linear system computed during simulation.

Use this parameter to:

• Compute a discrete-time system with a specific sample time from a continuous-time
system

• Resample a discrete-time system with a different sample time
• Compute a continuous-time system from a discrete-time system

When computing discrete-time systems from continuous-time systems and vice-versa,
the software uses the conversion method specified in Sample time rate conversion
method.

Settings

Default: auto

auto. Computes the sample time as:

• 0, for continuous-time models.
• For models that have blocks with different sample times (multi-rate models),

least common multiple of the sample times. For example, if you have a mix of
continuous-time and discrete-time blocks with sample times of 0, 0.2 and 0.3, the
sample time of the linear model is 0.6.

Positive finite value. Use to compute:

• A discrete-time linear system from a continuous-time system.
• A discrete-time linear system from another discrete-time system with a different

sample time

0

Use to compute a continuous-time linear system from a discrete-time model.

Command-Line Information
Parameter: SampleTime
Type: string
Value: auto | Positive finite value | 0
Default: auto
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See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Sample time rate conversion method

Method for converting the sample time of single- or multi-rate models.

This parameter is used only when the value of Linear system sample time is not auto.

Settings

Default: Zero-Order Hold

Zero-Order Hold

Zero-order hold, where the control inputs are assumed piecewise constant over the
sampling time Ts. For more information, see “Zero-Order Hold” in Control System
Toolbox User's Guide.

This method usually performs better in time domain.
Tustin (bilinear)

Bilinear (Tustin) approximation without frequency prewarping. The software rounds
off fractional time delays to the nearest multiple of the sampling time. For more
information, see “Tustin Approximation” in Control System Toolbox User's Guide.

This method usually perform better in the frequency domain.
Tustin with Prewarping

Bilinear (Tustin) approximation with frequency prewarping. Also specify the prewarp
frequency in Prewarp frequency (rad/s). For more information, see “Tustin
Approximation” in Control System Toolbox User's Guide.

This method usually perform better in the frequency domain. Use this method to
ensure matching at frequency region of interest.

Upsampling when possible, Zero-Order Hold otherwise

Upsample a discrete-time system when possible and use Zero-Order Hold
otherwise.
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You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Upsampling when possible, Tustin otherwise

Upsample a discrete-time system when possible and use Tustin (bilinear)
otherwise.

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Upsampling when possible, Tustin with Prewarping otherwise

Upsample a discrete-time system when possible and use Tustin with Prewarping
otherwise. Also, specify the prewarp frequency in Prewarp frequency (rad/s).

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Dependencies

Selecting either:

• Tustin with Prewarping

• Upsampling when possible, Tustin with Prewarping otherwise

enables Prewarp frequency (rad/s).

Command-Line Information
Parameter: RateConversionMethod
Type: string
Value: 'zoh' | 'tustin' | 'prewarp'| 'upsampling_zoh'|
'upsampling_tustin'| 'upsampling_prewarp'
Default: 'zoh'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Prewarp frequency (rad/s)

Prewarp frequency for Tustin method, specified in radians/second.
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Settings

Default: 10

Positive scalar value, smaller than the Nyquist frequency before and after resampling. A
value of 0 corresponds to the standard Tustin method without frequency prewarping.

Dependencies

Selecting either

• Tustin with Prewarping

• Upsampling when possible, Tustin with Prewarping otherwise

in Sample time rate conversion method enables this parameter.

Command-Line Information
Parameter: PreWarpFreq
Type: string
Value: 10 | positive scalar value
Default: 10

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Use full block names

How the state, input and output names appear in the linear system computed during
simulation.

The linear system is a state-space object and system states and input/output names
appear in following state-space object properties:

Input, Output or State Name Appears in Which State-Space Object Property

Linearization input name InputName

Linearization output name OutputName

State names StateName
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Settings

Default: Off

 On
Show state and input/output names with their path through the model hierarchy.
For example, in the chemical reactor model, a state in the Integrator1 block of the
CSTR subsystem appears with full path as scdcstr/CSTR/Integrator1.

 Off
Show only state and input/output names. Use this option when the signal name
is unique and you know where the signal is location in your Simulink model. For
example, a state in the Integrator1 block of the CSTR subsystem appears as
Integrator1.

Command-Line Information
Parameter: UseFullBlockNameLabels
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Use bus signal names

How to label signals associated with linearization inputs and outputs on buses, in the
linear system computed during simulation (applies only when you select an entire bus as
an I/O point).

Selecting an entire bus signal is not recommended. Instead, select individual bus
elements.

You cannot use this parameter when your model has mux/bus mixtures.

Settings

Default: Off
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 On
Use the signal names of the individual bus elements.

Bus signal names appear when the input and output are at the output of the
following blocks:

• Root-level inport block containing a bus object
• Bus creator block
• Subsystem block whose source traces back to one of the following blocks:

• Output of a bus creator block
• Root-level inport block by passing through only virtual or nonvirtual

subsystem boundaries

 Off
Use the bus signal channel number.

Command-Line Information
Parameter: UseBusSignalLabels
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Include step response bound in assertion

Check that the linear step response satisfies all the characteristics specified in:

• Final value
• Rise time and % Rise
• Settling time and % Settling
• % Overshoot
• % Undershoot
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The software displays a warning if the step response violates the specified values.

This parameter is used for assertion only if Enable assertion in the Assertion tab is
selected.

The bounds also appear on the step response plot, as shown in the next figure.

Settling timeRise time

% Undershoot

% Settling
% Overshoot

% Rise

Final
value

Initial
value

If you clear Enable assertion, the bounds are not used for assertion but continue to
appear on the plot.

Settings

Default:

• Off for Linear Step Response Plot block.
• On for Check Linear Step Response Characteristics block.

 On
Check that the step response satisfies the specified bounds, during simulation.

 Off
Do not check that the step response satisfies the specified bounds, during simulation.
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Tips

• Clearing this parameter disables the step response bounds and the software stops
checking that the bounds are satisfied during simulation. The bound segments are
also greyed out on the plot.

• To only view the bounds on the plot, clear Enable assertion.

Command-Line Information
Parameter: EnableStepResponseBound
Type: string
Value: 'on' | 'off'
Default: 'off' for Linear Step Response Plot block, 'on' for Check Linear Step
Response Characteristics block.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Final value

Final value of the output signal level in response to a step input.

Settings

Default:

• [] for Linear Step Response Plot block
• 1 for Check Linear Step Response Characteristics block

Finite real scalar.

Tips

• To assert that final value is satisfied, select both Include step response bound in
assertion and Enable assertion.

• To modify the final value from the plot window, drag the corresponding bound
segment. Alternatively, right-click the segment, and select Bounds > Edit. Specify
the new value in Final value. You must click Update Block before simulating the
model.
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Command-Line Information
Parameter: FinalValue
Type: string
Value: [] | 1 | finite real scalar. Must be specified inside single quotes ('').
Default: '[]' for Linear Step Response Plot block, '1' for Check Linear Step Response
Characteristics block.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Rise time

Time taken, in seconds, for the step response to reach a percentage of the final value
specified in % Rise.

Settings

Default:

• [] for Linear Step Response Plot block
• 5 for Check Linear Step Response Characteristics block

Finite positive real scalar, less than the settling time.

Tips

• To assert that the rise time is satisfied, select both Include step response bound in
assertion and Enable assertion.

• To modify the rise time from the plot window, drag the corresponding bound segment.
Alternatively, right-click the segment, and select Bounds > Edit. Specify the new
value in Rise time. You must click Update Block before simulating the model.

Command-Line Information
Parameter: RiseTime
Type: string
Value: [] | 5 | finite positive real scalar. Must be specified inside single
quotes ('').
Default: '[]' for Linear Step Response Plot block, '5' for Check Linear Step Response
Characteristics block.
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See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

% Rise

The percentage of final value used with the Rise time.

Settings

Default:

Minimum: 0

Maximum: 100

• [] for Linear Step Response Plot block
• 80 for Check Linear Step Response Characteristics block

Positive scalar, less than (100 – % settling).

Tips

• To assert that the percent rise is satisfied, select both Include step response bound
in assertion and Enable assertion.

• To modify the percent rise from the plot window, drag the corresponding bound
segment. Alternatively, right-click the segment, and select Bounds > Edit. Specify
the new value in % Rise. You must click Update Block before simulating the model.

Command-Line Information
Parameter: PercentRise
Type: string
Value: [] | 80 | positive scalar between 0 and 100. Must be specified inside
single quotes ('').
Default: '[]' for Linear Step Response Plot block, '80' for Check Linear Step
Response Characteristics block.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”
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“Model Verification at Default Simulation Snapshot Time” on page 5-6

Settling time

The time, in seconds, taken for the step response to settle within a specified range
around the final value. This settling range is defined as the final value plus or minus the
percentage of the final value, specified in % Settling.

Settings

Default:

• [] for Linear Step Response Plot block
• 7 for Check Linear Step Response Characteristics block

Finite positive real scalar, greater than rise time.

Tips

• To assert that the settling time is satisfied, select both Include step response
bound in assertion and Enable assertion.

• To modify the settling time from the plot window, drag the corresponding bound
segment. Alternatively, right-click the segment, and select Bounds > Edit. Specify
the new value in Settling time. You must click Update Block before simulating the
model.

Command-Line Information
Parameter: SettlingTime
Type: string
Value: [] | 7 | positive finite real scalar. Must be specified inside single
quotes ('').
Default: '[]' for Linear Step Response Plot block, '7' for Check Linear Step Response
Characteristics block.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

% Settling
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The percentage of the final value that defines the settling range of the Settling time.

Settings

Default:

Minimum: 0

Maximum: 100

• [] for Linear Step Response Plot block
• 1 for Check Linear Step Response Characteristics block

Real number, less than (100 – % rise) and less than % overshoot.

Tips

• To assert that the percent settling is satisfied, select both Include step response
bound in assertion and Enable assertion.

• To modify the percent settling from the plot window, drag the corresponding bound
segment. Alternatively, right-click the segment, and select Bounds > Edit. Specify
the new value in % Settling. You must click Update Block before simulating the
model.

Command-Line Information
Parameter: PercentSettling
Type: string
Value: [] | 1 | real value between 0 and 100. Must be specified inside single
quotes ('').
Default: '[]' for Linear Step Response Plot block, '1' for Check Linear Step Response
Characteristics block.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

% Overshoot

The amount by which the step response can exceed the final value, specified as a
percentage.
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Settings

Default:

Minimum: 0

Maximum: 100

• [] for Linear Step Response Plot block
• 10 for Check Linear Step Response Characteristics block

Real number, greater than % settling.

Tips

• To assert that the percent overshoot is satisfied, select both Include step response
bound in assertion and Enable assertion.

• To modify the percent overshoot from the plot window, drag the corresponding bound
segment. Alternatively, right-click the segment, and select Bounds > Edit. Specify
the new value in % Overshoot. You must click Update Block before simulating the
model.

Command-Line Information
Parameter: PercentOvershoot
Type: string
Value: [] | 10 | real value between 0 and 100. Must be specified inside single
quotes ('').
Default: '[]' for Linear Step Response Plot block, '10' for Check Linear Step
Response Characteristics block.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

% Undershoot

The amount by which the step response can undershoot the initial value, specified as a
percentage.
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Settings

Default:

Minimum: 0

Maximum: 100

• [] for Linear Step Response Plot block
• 1 for Check Linear Step Response Characteristics block

Real number.

Tips

• To assert that the percent undershoot is satisfied, select both Include step response
bound in assertion and Enable assertion.

• To modify the percent undershoot from the plot window, drag the corresponding
bound segment. Alternatively, right-click the segment, and select Bounds > Edit.
Specify the new value in % Undershoot. You must click Update Block before
simulating the model.

Command-Line Information
Parameter: PercentUndershoot
Type: string
Value: [] | 1 | real value between 0 and 100. Must be specified inside single
quotes ('').
Default: '1'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Save data to workspace

Save one or more linear systems to perform further linear analysis or control design.

The saved data is in a structure whose fields include:

• time — Simulation times at which the linear systems are computed.
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• values — State-space model representing the linear system. If the linear system is
computed at multiple simulation times, values is an array of state-space models.

• operatingPoints — Operating points corresponding to each linear system in
values. This field exists only if Save operating points for each linearization is
checked.

The location of the saved data structure depends upon the configuration of the Simulink
model:

• If the Simulink model is not configured to save simulation output as a single object,
the data structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the
data structure is a field in the Simulink.SimulationOutput object that contains
the logged simulation data.

To configure your model to save simulation output in a single object, in the
Simulink editor, select Simulation > Model Configuration Parameters. In the
Configuration Parameters dialog box, in the Data Import/Export pane, check Save
Simulation output as single object.

For more information about data logging in Simulink, see “Export Simulation Data” and
the “Simulink.SimulationOutput class” reference page.

Settings

Default: Off

 On
Save the computed linear system.

 Off
Do not save the computed linear system.

Dependencies

This parameter enables Variable name.

Command-Line Information
Parameter: SaveToWorkspace
Type: string
Value: 'on' | 'off'
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Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Variable name

Name of the data structure that stores one or more linear systems computed during
simulation.

The location of the saved data structure depends upon the configuration of the Simulink
model:

• If the Simulink model is not configured to save simulation output as a single object,
the data structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the
data structure is a field in the Simulink.SimulationOutput object that contains
the logged simulation data. The

The name must be unique among the variable names used in all data logging model
blocks, such as Linear Analysis Plot blocks, Model Verification blocks, Scope blocks, To
Workspace blocks, and simulation return variables such as time, states, and outputs.

For more information about data logging in Simulink, see “Export Simulation Data” and
the “Simulink.SimulationOutput class” reference page.

Settings

Default: sys

String.

Dependencies

Save data to workspace enables this parameter.

Command-Line Information
Parameter: SaveName
Type: string
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Value: sys | any string. Must be specified inside single quotes ('').
Default: 'sys'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Save operating points for each linearization

When saving linear systems to the workspace for further analysis or control design, also
save the operating point corresponding to each linearization. Using this option adds
a field named operatingPoints to the data structure that stores the saved linear
systems.

Settings

Default: Off

 On
Save the operating points.

 Off
Do not save the operating points.

Dependencies

Save data to workspace enables this parameter.

Command-Line Information
Parameter: SaveOperatingPoint
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6
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Enable assertion

Enable the block to check that bounds specified and included for assertion in the Bounds
tab are satisfied during simulation. Assertion fails if a bound is not satisfied. A warning,
reporting the assertion failure, appears at the MATLAB prompt.

If assertion fails, you can optionally specify that the block:

• Execute a MATLAB expression, specified in Simulation callback when assertion
fails (optional).

• Stop the simulation and bring that block into focus, by selecting Stop simulation
when assertion fails.

For the Linear Analysis Plots blocks, this parameter has no effect because no
bounds are included by default. If you want to use the Linear Analysis Plots blocks
for assertion, specify and include bounds in the Bounds tab.

Clearing this parameter disables assertion, i.e., the block no longer checks that specified
bounds are satisfied. The block icon also updates to indicate that assertion is disabled.

In the Configuration Parameters dialog box of the Simulink model, the Model
Verification block enabling option in the Debugging area of Data Validity node,
lets you to enable or disable all model verification blocks in a model, regardless of the
setting of this option.

Settings

Default: On

 On
Check that bounds included for assertion in the Bounds tab are satisfied during
simulation. A warning, reporting assertion failure, is displayed at the MATLAB
prompt if bounds are violated.
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 Off
Do not check that bounds included for assertion are satisfied during simulation.

Dependencies

This parameter enables:

• Simulation callback when assertion fails (optional)
• Stop simulation when assertion fails

Command-Line Information
Parameter: enabled
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Simulation callback when assertion fails (optional)

MATLAB expression to execute when assertion fails.

Because the expression is evaluated in the MATLAB workspace, define all variables used
in the expression in that workspace.

Settings

No Default

A MATLAB expression.

Dependencies

Enable assertion enables this parameter.

Command-Line Information
Parameter: callback
Type: string
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Value: '' | MATLAB expression
Default: ''

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Stop simulation when assertion fails

Stop the simulation when a bound specified in the Bounds tab is violated during
simulation, i.e., assertion fails.

If you run the simulation from the Simulink Editor, the Simulation Diagnostics window
opens to display an error message. Also, the block where the bound violation occurs is
highlighted in the model.

Settings

Default: Off

 On
Stop simulation if a bound specified in the Bounds tab is violated.

 Off
Continue simulation if a bound is violated with a warning message at the MATLAB
prompt.

Tips

• Because selecting this option stops the simulation as soon as the assertion fails,
assertion failures that might occur later during the simulation are not reported. If you
want all assertion failures to be reported, do not select this option.

Dependencies

Enable assertion enables this parameter.

Command-Line Information
Parameter: stopWhenAssertionFail
Type: string
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Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Output assertion signal

Output a Boolean signal that, at each time step, is:

• True (1) if assertion succeeds, i.e., all bounds are satisfied
• False (1) if assertion fails, i.e., a bound is violated.

The output signal data type is Boolean only if the Implement logic signals as Boolean
data option in the Optimization pane of the Configuration Parameters dialog box of the
Simulink model is selected. Otherwise, the data type of the output signal is double.

Selecting this parameter adds an output port to the block that you can connect to any
block in the model.

Settings

Default:Off

 On
Output a Boolean signal to indicate assertion status. Adds a port to the block.

 Off
Do not output a Boolean signal to indicate assertion status.

Tips

• Use this parameter to design complex assertion logic. For an example, see “Model
Verification Using Simulink Control Design and Simulink Verification Blocks” on
page 5-25.

Command-Line Information
Parameter: export
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Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Show plot on block open

Open the plot window instead of the Block Parameters dialog box when you double-click
the block in the Simulink model.

Use this parameter if you prefer to open and perform tasks, such as adding or modifying
bounds, in the plot window instead of the Block Parameters dialog box. If you want to

access the block parameters from the plot window, select Edit or click .

For more information on the plot, see Show Plot.

Settings

Default: Off

 On
Open the plot window when you double-click the block.

 Off
Open the Block Parameters dialog box when double-clicking the block.

Command-Line Information
Parameter: LaunchViewOnOpen
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”
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“Model Verification at Default Simulation Snapshot Time” on page 5-6

Show Plot

Open the plot window.

Use the plot to view:

• Linear system characteristics computed from the nonlinear Simulink model during
simulation

You must click this button before you simulate the model to view the linear
characteristics.

You can display additional characteristics, such as the peak response time and
stability margins, of the linear system by right-clicking the plot and selecting
Characteristics.

• Bounds on the linear system characteristics

You can specify bounds in the Bounds tab of the Block Parameters dialog box or
right-click the plot and select Bounds > New Bound. For more information on
the types of bounds you can specify on each plot, see “Verifiable Linear System
Characteristics” on page 5-5 in the User's Guide.

You can modify bounds by dragging the bound segment or by right-clicking the plot
and selecting Bounds > Edit Bound. Before you simulate the model, click Update
Block to update the bound value in the block parameters.

Typical tasks that you perform in the plot window include:

•
Opening the Block Parameters dialog box by clicking  or selecting Edit.

•
Finding the block that the plot window corresponds to by clicking  or selecting
View > Highlight Simulink Block. This action makes the Simulink Editor active
and highlights the block.

• Simulating the model by clicking  or selecting Simulation > Run. This action
also linearizes the portion of the model between the specified linearization input and
output.
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•
Adding legend on the linear system characteristic plot by clicking .

See Also

Check Linear Step Response Characteristics

Tutorials

• “Visualize Bode Response of Simulink Model During Simulation” on page 2-53
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-74
• “Visualize Linear System of a Continuous-Time Model Discretized During Simulation”

on page 2-81
• Plotting Linear System Characteristics of a Chemical Reactor
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Nichols Plot
Nichols plot of linear system approximated from nonlinear Simulink model

Library
Simulink Control Design

Description
This block is same as the Check Nichols Characteristics block except for different default
parameter settings in the Bounds tab.

Compute a linear system from a nonlinear Simulink model and plot the linear system on
a Nichols plot.

During simulation, the software linearizes the portion of the model between specified
linearization inputs and outputs, and plots the open-loop gain and phase of the linear
system.

The Simulink model can be continuous- or discrete-time or multirate and can have time
delays. Because you can specify only one linearization input/output pair in this block, the
linear system is Single-Input Single-Output (SISO).

You can specify multiple open- and closed-loop gain and phase bounds and view them on
the Nichols plot. You can also check that the bounds are satisfied during simulation:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts, and a warning message appears at the

MATLAB prompt. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal:
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• If all bounds are satisfied, the signal is true (1).
• If a bound is not satisfied, the signal is false (0).

You can add multiple Nichols Plot blocks to compute and plot the gains and phases of
various portions of the model.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation
mode.

Parameters

The following table summarizes the Nichols Plot block parameters, accessible via the
block parameter dialog box.

Task Parameters

Specify inputs and outputs
(I/Os).

In Linearizations tab:

• “Linearization inputs/
outputs” on page 7-5.

• “Click a signal in the
model to select it” on page
7-7.

Specify settings. In Linearizations tab:

• “Linearize on” on page
7-10.

• “Snapshot times” on page
7-11.

• “Trigger type” on page
7-11.

Configure linearization.

Specify algorithm options. In Algorithm Options of
Linearizations tab:

• “Enable zero-crossing
detection” on page 7-12.
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Task Parameters

• “Use exact delays” on
page 7-14.

• “Linear system sample
time” on page 7-14.

• “Sample time rate
conversion method” on
page 7-16.

• “Prewarp frequency (rad/
s)” on page 7-17.

Specify labels for linear
system I/Os and state
names.

In Labels of
Linearizations tab:

• “Use full block names” on
page 7-18.

• “Use bus signal names”
on page 7-19.

Plot the linear system. Show Plot
Specify the feedback sign for closed-loop gain and phase
margins.

“Feedback sign” on page
7-163 in Bounds tab.

(Optional) Specify bounds on gains and phases of the
linear system for assertion.

In Bounds tab:

• Include gain and phase
margins in assertion.

• Include closed-loop peak
gain in assertion.

• Include open-loop gain-
phase bound in assertion.
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Task Parameters

Specify assertion options (only when you specify bounds
on the linear system).

In Assertion tab:

• “Enable assertion” on
page 7-31.

• “Simulation callback
when assertion fails
(optional)” on page 7-33.

• “Stop simulation when
assertion fails” on page
7-33.

• “Output assertion signal”
on page 7-34.

Save linear system to MATLAB workspace. “Save data to workspace” on
page 7-28 in Logging tab.

Display plot window instead of block parameters dialog
box on double-clicking the block.

“Show plot on block open” on
page 7-35.

Linearization inputs/outputs

Linearization inputs and outputs that define the portion of a nonlinear Simulink model
to linearize

.If you have defined the linearization input and output in the Simulink model, the block
automatically detects these points and displays them in the Linearization inputs/

outputs area. Click  at any time to update the Linearization inputs/outputs table
with I/Os from the model. To add other analysis points:

1

Click .

The dialog box expands to display a Click a signal in the model to select it area

and a new  button.
2 Select one or more signals in the Simulink Editor.
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The selected signals appear under Model signal in the Click a signal in the
model to select it area.

3 (Optional) For buses, expand the bus signal to select individual elements.

Tip For large buses or other large lists of signals, you can enter search text for
filtering element names in the Filter by name edit box. The name match is case-
sensitive. Additionally, you can enter MATLAB “regular expression”.

To modify the filtering options, click .

Filtering Options

• “Enable regular expression” on page 7-8

• “Show filtered results as a flat list” on page 7-9
4

Click  to add the selected signals to the Linearization inputs/outputs table.
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Tip To find the location in the Simulink model corresponding to a signal in the

Linearization inputs/outputs table, select the signal in the table and click .

The table displays the following information about the selected signal:

Block : Port : Bus Element Name of the block associated with the input/output. The number
adjacent to the block name is the port number where the selected
bus signal is located. The last entry is the selected bus element
name.

Configuration Type of linearization point:

• Open-loop Input — Specifies a linearization input point after
a loop opening.

• Open-loop Output — Specifies a linearization output point
before a loop opening.

• Loop Transfer — Specifies an output point before a loop
opening followed by an input.

• Input Perturbation — Specifies an additive input to a
signal.

• Output Measurement — Takes measurement at a signal.
• Loop Break — Specifies a loop opening.
• Sensitivity — Specifies an additive input followed by an

output measurement.
• Complementary Sensitivity — Specifies an output followed

by an additive input.

Note: If you simulate the model without specifying an input or output, the software
does not compute a linear system. Instead, you see a warning message at the MATLAB
prompt.

Settings

No default
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Command-Line Information

Use getlinio and setlinio to specify linearization inputs and outputs.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Click a signal in the model to select it

Enables signal selection in the Simulink model. Appears only when you click .

When this option appears, you also see the following changes:

•
A new  button.

Use to add a selected signal as a linearization input or output in the Linearization
inputs/outputs table. For more information, see Linearization inputs/outputs.

•
 changes to .

Use to collapse the Click a signal in the model to select it area.

Settings

No default

Command-Line Information

Use the getlinio and setlinio commands to select signals as linearization inputs and
outputs.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”
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“Model Verification at Default Simulation Snapshot Time” on page 5-6

Enable regular expression

Enable the use of MATLAB regular expressions for filtering signal names. For example,
entering t$ in the Filter by name edit box displays all signals whose names end with a
lowercase t (and their immediate parents). For details, see “Regular Expressions”.

Settings

Default: On

 On
Allow use of MATLAB regular expressions for filtering signal names.

 Off
Disable use of MATLAB regular expressions for filtering signal names. Filtering
treats the text you enter in the Filter by name edit box as a literal string.

Dependencies

Selecting the Options button on the right-hand side of the Filter by name edit box ( )
enables this parameter.

Show filtered results as a flat list

Uses a flat list format to display the list of filtered signals, based on the search text in the
Filter by name edit box. The flat list format uses dot notation to reflect the hierarchy
of bus signals. The following is an example of a flat list format for a filtered set of nested
bus signals.
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Settings

Default: Off

 On
Display the filtered list of signals using a flat list format, indicating bus hierarchies
with dot notation instead of using a tree format.

 Off
Display filtered bus hierarchies using a tree format.

Dependencies

Selecting the Options button on the right-hand side of the Filter by name edit box ( )
enables this parameter.

Linearize on

When to compute the linear system during simulation.

Settings

Default: Simulation snapshots
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Simulation snapshots

Specific simulation time, specified in Snapshot times.

Use when you:

• Know one or more times when the model is at steady-state operating point
• Want to compute the linear systems at specific times

External trigger

Trigger-based simulation event. Specify the trigger type in Trigger type.

Use when a signal generated during simulation indicates steady-state operating
point.

Selecting this option adds a trigger port to the block. Use this port to connect the
block to the trigger signal.

For example, for an aircraft model, you might want to compute the linear system
whenever the fuel mass is a fraction of the maximum fuel mass. In this case, model
this condition as an external trigger.

Dependencies

• Setting this parameter to Simulation snapshots enables Snapshot times.
• Setting this parameter to External trigger enables Trigger type.

Command-Line Information
Parameter: LinearizeAt
Type: string
Value: 'SnapshotTimes' | 'ExternalTrigger'
Default: 'SnapshotTimes'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Snapshot times

One or more simulation times. The linear system is computed at these times.
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Settings

Default: 0

• For a different simulation time, enter the time. Use when you:

• Want to plot the linear system at a specific time
• Know the approximate time when the model reaches steady-state operating point

• For multiple simulation times, enter a vector. Use when you want to compute and plot
linear systems at multiple times.

Snapshot times must be less than or equal to the simulation time specified in the
Simulink model.

Dependencies

Selecting Simulation snapshots in Linearize on enables this parameter.

Command-Line Information
Parameter: SnapshotTimes
Type: string
Value: 0 | positive real number | vector of positive real numbers
Default: 0

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Trigger type

Trigger type of an external trigger for computing linear system.

Settings

Default: Rising edge

Rising edge

Rising edge of the external trigger signal.
Falling edge

Falling edge of the external trigger signal.
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Dependencies

Selecting External trigger in Linearize on enables this parameter.

Command-Line Information
Parameter: TriggerType
Type: string
Value: 'rising' | 'falling'
Default: 'rising'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Enable zero-crossing detection

Enable zero-crossing detection to ensure that the software computes the linear system
characteristics at the following simulation times:

• The exact snapshot times, specified in Snapshot times.

As shown in the following figure, when zero-crossing detection is enabled, the
variable-step Simulink solver simulates the model at the snapshot time Tsnap. Tsnap
may lie between the simulation time steps Tn-1 and Tn which are automatically chosen
by the solver.

Computes linear system
characteristics at this time point

TimeTn-1 TnTsnap

• The exact times when an external trigger is detected, specified in Trigger type.

As shown in the following figure, when zero-crossing detection is enabled, the
variable-step Simulink solver simulates the model at the time, Ttrig, when the trigger
signal is detected. Ttrig may lie between the simulation time steps Tn-1 and Tn which
are automatically chosen by the solver.
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Computes linear system
characteristics at this time point

Time

Amplitude

1

0
Tn-1

Tn
Ttrig

Trigger signal

For more information on zero-crossing detection, see “Zero-Crossing Detection” in the
Simulink User Guide.

Settings

Default: On

 On
Compute linear system characteristics at the exact snapshot time or exact time when
a trigger signal is detected.

This setting is ignored if the Simulink solver is fixed step.

 Off
Compute linear system characteristics at the simulation time steps that the variable-
step solver chooses. The software may not compute the linear system at the exact
snapshot time or exact time when a trigger signal is detected.

Command-Line Information
Parameter: ZeroCross
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Use exact delays
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How to represent time delays in your linear model.

Use this option if you have blocks in your model that have time delays.

Settings

Default: Off

 On
Return a linear model with exact delay representations.

 Off
Return a linear model with Padé approximations of delays, as specified in your
Transport Delay and Variable Transport Delay blocks.

Command-Line Information
Parameter: UseExactDelayModel
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Linear system sample time

Sample time of the linear system computed during simulation.

Use this parameter to:

• Compute a discrete-time system with a specific sample time from a continuous-time
system

• Resample a discrete-time system with a different sample time
• Compute a continuous-time system from a discrete-time system

When computing discrete-time systems from continuous-time systems and vice-versa,
the software uses the conversion method specified in Sample time rate conversion
method.



 Nichols Plot

7-149

Settings

Default: auto

auto. Computes the sample time as:

• 0, for continuous-time models.
• For models that have blocks with different sample times (multi-rate models),

least common multiple of the sample times. For example, if you have a mix of
continuous-time and discrete-time blocks with sample times of 0, 0.2 and 0.3, the
sample time of the linear model is 0.6.

Positive finite value. Use to compute:

• A discrete-time linear system from a continuous-time system.
• A discrete-time linear system from another discrete-time system with a different

sample time

0

Use to compute a continuous-time linear system from a discrete-time model.

Command-Line Information
Parameter: SampleTime
Type: string
Value: auto | Positive finite value | 0
Default: auto

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Sample time rate conversion method

Method for converting the sample time of single- or multi-rate models.

This parameter is used only when the value of Linear system sample time is not auto.

Settings

Default: Zero-Order Hold



7 Blocks — Alphabetical List

7-150

Zero-Order Hold

Zero-order hold, where the control inputs are assumed piecewise constant over the
sampling time Ts. For more information, see “Zero-Order Hold” in Control System
Toolbox User's Guide.

This method usually performs better in time domain.
Tustin (bilinear)

Bilinear (Tustin) approximation without frequency prewarping. The software rounds
off fractional time delays to the nearest multiple of the sampling time. For more
information, see “Tustin Approximation” in Control System Toolbox User's Guide.

This method usually perform better in the frequency domain.
Tustin with Prewarping

Bilinear (Tustin) approximation with frequency prewarping. Also specify the prewarp
frequency in Prewarp frequency (rad/s). For more information, see “Tustin
Approximation” in Control System Toolbox User's Guide.

This method usually perform better in the frequency domain. Use this method to
ensure matching at frequency region of interest.

Upsampling when possible, Zero-Order Hold otherwise

Upsample a discrete-time system when possible and use Zero-Order Hold
otherwise.

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Upsampling when possible, Tustin otherwise

Upsample a discrete-time system when possible and use Tustin (bilinear)
otherwise.

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Upsampling when possible, Tustin with Prewarping otherwise

Upsample a discrete-time system when possible and use Tustin with Prewarping
otherwise. Also, specify the prewarp frequency in Prewarp frequency (rad/s).

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.
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Dependencies

Selecting either:

• Tustin with Prewarping

• Upsampling when possible, Tustin with Prewarping otherwise

enables Prewarp frequency (rad/s).

Command-Line Information
Parameter: RateConversionMethod
Type: string
Value: 'zoh' | 'tustin' | 'prewarp'| 'upsampling_zoh'|
'upsampling_tustin'| 'upsampling_prewarp'
Default: 'zoh'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Prewarp frequency (rad/s)

Prewarp frequency for Tustin method, specified in radians/second.

Settings

Default: 10

Positive scalar value, smaller than the Nyquist frequency before and after resampling. A
value of 0 corresponds to the standard Tustin method without frequency prewarping.

Dependencies

Selecting either

• Tustin with Prewarping

• Upsampling when possible, Tustin with Prewarping otherwise

in Sample time rate conversion method enables this parameter.
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Command-Line Information
Parameter: PreWarpFreq
Type: string
Value: 10 | positive scalar value
Default: 10

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Use full block names

How the state, input and output names appear in the linear system computed during
simulation.

The linear system is a state-space object and system states and input/output names
appear in following state-space object properties:

Input, Output or State Name Appears in Which State-Space Object Property

Linearization input name InputName

Linearization output name OutputName

State names StateName

Settings

Default: Off

 On
Show state and input/output names with their path through the model hierarchy.
For example, in the chemical reactor model, a state in the Integrator1 block of the
CSTR subsystem appears with full path as scdcstr/CSTR/Integrator1.

 Off
Show only state and input/output names. Use this option when the signal name
is unique and you know where the signal is location in your Simulink model. For
example, a state in the Integrator1 block of the CSTR subsystem appears as
Integrator1.
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Command-Line Information
Parameter: UseFullBlockNameLabels
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Use bus signal names

How to label signals associated with linearization inputs and outputs on buses, in the
linear system computed during simulation (applies only when you select an entire bus as
an I/O point).

Selecting an entire bus signal is not recommended. Instead, select individual bus
elements.

You cannot use this parameter when your model has mux/bus mixtures.

Settings

Default: Off

 On
Use the signal names of the individual bus elements.

Bus signal names appear when the input and output are at the output of the
following blocks:

• Root-level inport block containing a bus object
• Bus creator block
• Subsystem block whose source traces back to one of the following blocks:

• Output of a bus creator block
• Root-level inport block by passing through only virtual or nonvirtual

subsystem boundaries
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 Off
Use the bus signal channel number.

Command-Line Information
Parameter: UseBusSignalLabels
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Include gain and phase margins in assertion

Check that the gain and phase margins are greater than the values specified in Gain
margin (dB) > and Phase margin (deg) >, during simulation. The software displays a
warning if the gain or phase margin is less than or equal to the specified value.

By default, negative feedback, specified in Feedback sign, is used to compute the
margins.

This parameter is used for assertion only if Enable assertion in the Assertion tab is
selected.

You can specify multiple gain and phase margin bounds on the linear system. The
bounds also appear on the Nichols plot. If you clear Enable assertion, the bounds are
not used for assertion but continue to appear on the plot.

Settings

Default:

• Off for Nichols Plot block.
• On for Check Nichols Characteristics block.

 On
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Check that the gain and phase margins satisfy the specified values, during
simulation.

 Off
Do not check that the gain and phase margins satisfy the specified values, during
simulation.

Tips

• Clearing this parameter disables the gain and phase margin bounds and the software
stops checking that the gain and phase margins satisfy the bounds during simulation.
The bounds are also greyed out on the plot.

• To only view the gain and phase margin on the plot, clear Enable assertion.

Command-Line Information
Parameter: EnableMargins
Type: string
Value: 'on' | 'off'
Default: 'off' for Nichols Plot block, 'on' for Check Nichols Characteristics block

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Gain margin (dB) >

Gain margin, in decibels.

By default, negative feedback, specified in Feedback sign, is used to compute the gain
margin.

Settings

Default:
[] for Nichols Plot block.
20 for Check Nichols Characteristics block.

• Positive finite number for one bound.
• Cell array of positive finite numbers for multiple bounds.
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Tips

• To assert that the gain margin is satisfied, select both Include gain and phase
margins in assertion and Enable assertion.

• You can add or modify gain margins from the plot window:

• To add new gain margin, right-click the plot, and select Bounds > New Bound.
Select Gain margin in Design requirement type, and specify the margin in
Gain margin.

• To modify the gain margin, drag the segment. Alternatively, right-click the plot,
and select Bounds > Edit Bound. Specify the new gain margin in Gain margin
>.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: GainMargin
Type: string
Value: [] | 20 | positive finite value. Must be specified inside single quotes ('').
Default: '[]' for Nichols Plot block, '20' for Check Nichols Characteristics block.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Phase margin (deg) >

Phase margin, in degrees.

By default, negative feedback, specified in Feedback sign, is used to compute the phase
margin.

Settings
[] for Nichols Plot block.
30 for Check Nichols Characteristics block.

• Positive finite number for one bound.
• Cell array of positive finite numbers for multiple bounds.
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Tips

• To assert that the phase margin is satisfied, select both Include gain and phase
margins in assertion and Enable assertion.

• You can add or modify phase margins from the plot window:

• To add new phase margin, right-click the plot, and select Bounds > New Bound.
Select Phase margin in Design requirement type, and specify the margin in
Phase margin.

• To modify the phase margin, drag the segment. Alternatively, right-click the
bound, and select Bounds > Edit Bound. Specify the new phase margin in Phase
margin >.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: PhaseMargin
Type: string
Value: [] | 30 | positive finite value. Must be specified inside single quotes ('').
Default: '[]' for Nichols Plot block, '30' for Check Nichols Characteristics block.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Include closed-loop peak gain in assertion

Check that the closed-loop peak gain is less than the value specified in Closed-loop
peak gain (dB) <, during simulation. The software displays a warning if the closed-loop
peak gain is greater than or equal to the specified value.

By default, negative feedback, specified in Feedback sign, is used to compute the
closed-loop peak gain.

This parameter is used for assertion only if Enable assertion in the Assertion tab is
selected.

You can specify multiple closed-loop peak gain bounds on the linear system. The bound
also appear on the Nichols plot as an m-circle. If you clear Enable assertion, the bounds
are not used for assertion but continue to appear on the plot.
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Settings

Default: Off

 On
Check that the closed-loop peak gain satisfies the specified value, during simulation.

 Off
Do not check that the closed-loop peak gain satisfies the specified value, during
simulation.

Tips

• Clearing this parameter disables the closed-loop peak gain bound and the software
stops checking that the peak gain satisfies the bounds during simulation. The bounds
are greyed out on the plot.

• To only view the closed-loop peak gain on the plot, clear Enable assertion.

Command-Line Information
Parameter: EnableCLPeakGain
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Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Closed-loop peak gain (dB) <

Closed-loop peak gain, in decibels.

By default, negative feedback, specified in Feedback sign, is used to compute the
margins.

Settings

Default []

• Positive or negative finite number for one bound.
• Cell array of positive or negative finite numbers for multiple bounds.

Tips

• To assert that the gain margin is satisfied, select both Include closed-loop peak
gain in assertion and Enable assertion.

• You can add or modify closed-loop peak gains from the plot window:

• To add the closed-loop peak gain, right-click the plot, and select Bounds > New
Bound. Select Closed-Loop peak gain in Design requirement type, and
specify the gain in Closed-Loop peak gain <.

• To modify the closed-loop peak gain, drag the segment. Alternatively, right-click
the bound, and select Bounds > Edit Bound. Specify the new closed-loop peak
gain in Closed-Loop peak gain <.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: CLPeakGain
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Type: string
Value: [] | positive or negative number | cell array of positive or
negative numbers. Must be specified inside single quotes ('').
Default: '[]'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Include open-loop gain-phase bound in assertion

Check that the Nichols response satisfies open-loop gain and phase bounds, specified in
Open-loop phases (deg) and Open-loop gains (dB), during simulation. The software
displays a warning if the Nichols response violates the bounds.

This parameter is used for assertion only if Enable assertion in the Assertion tab is
selected.

You can specify multiple gain and phase bounds on the linear systems computed during
simulation. The bounds also appear on the Nichols plot. If you clear Enable assertion,
the bounds are not used for assertion but continue to appear on the plot.

Settings

Default: Off

 On
Check if the Nichols response satisfies the specified open-loop gain and phase
bounds, during simulation.

 Off
Do not check if the Nichols response satisfies the specified open-loop gain and phase
bounds, during simulation.

Tips

• Clearing this parameter disables the gain-phase bound and the software stops
checking that the gain and phase satisfy the bound during simulation. The bound
segments are also greyed out on the plot.
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• To only view the bound on the plot, clear Enable assertion.

Command-Line Information
Parameter: EnableGainPhaseBound
Type: string
Value: 'on' | 'off'
Default: 'off'

Open-loop phases (deg)

Open-loop phases, in degrees.

Specify the corresponding open-loop gains in Open-loop gains (dB).

Settings

Default: []

Must be specified as start and end phases:

• Positive or negative finite numbers for a single bound with one edge
• Matrix of positive or negative finite numbers , for a single bound with multiple edges
• Cell array of matrices with finite numbers for multiple bounds
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Tips

• To assert that the open-loop gains and phases are satisfied, select both Include
open-loop gain-phase bound in assertion and Enable assertion.

• You can add or modify open-loop phases from the plot window:

• To add a new phases, right-click the plot, and select Bounds > New Bound.
Select Gain-Phase requirement in Design requirement type, and specify the
phases in the Open-Loop phase column. Specify the corresponding gains in the
Open-Loop gain column.

• To modify the phases, drag the bound segment. Alternatively, right-click the
segment, and select Bounds > Edit Bounds. Specify the new phases in the
Open-Loop phase column.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: OLPhases
Type: string
Value: [] | positive or negative finite numbers | matrix of positive or
negative finite numbers | cell array of matrices with finite numbers.
Must be specified inside single quotes ('').
Default: '[]'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Open-loop gains (dB)

Open-loop gains, in decibels.

Specify the corresponding open-loop phases in Open-loop phases (deg).

Settings

Default: []

Must be specified as start and end gains:
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• Positive or negative number for a single bound with one edge
• Matrix of positive or negative finite numbers for a single bound with multiple edges
• Cell array of matrices with finite numbers for multiple bounds

Tips

• To assert that the open-loop gains are satisfied, select both Include open-loop gain-
phase bound in assertion and Enable assertion.

• You can add or modify open-loop gains from the plot window:

• To add a new gains, right-click the plot, and select Bounds > New Bound. Select
Gain-Phase requirement in Design requirement type, and specify the gains
in the Open-Loop phase column. Specify the phases in the Open-Loop phase
column.

• To modify the gains, drag the bound segment. Alternatively, right-click the
segment, and select Bounds > Edit Bounds. Specify the new gains in the Open-
Loop gain column.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: OLGains
Type: string
Value: [] | positive or negative number | matrix of positive or negative
finite numbers | cell array of matrices with finite numbers. Must be
specified inside single quotes ('').
Default: '[]'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Feedback sign

Feedback sign to determine the closed-loop gain and phase characteristics of the linear
system, computed during simulation.

To determine the feedback sign, check if the path defined by the linearization inputs and
outputs include the feedback Sum block:
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• If the path includes the Sum block, specify positive feedback.
• If the path does not include the Sum block, specify the same feedback sign as the Sum

block.

For example, in the aircraft model, the Check Gain and Phase Margins block includes the
negative sign in the summation block. Therefore, the Feedback sign is positive.

Settings

Default: negative feedback

negative feedback

Use when the path defined by the linearization inputs/outputs does not include the
Sum block and the Sum block feedback sign is -.

positive feedback

Use when:

• The path defined by the linearization inputs/outputs includes the Sum block.
• The path defined by the linearization inputs/outputs does not include the Sum

block and the Sum block feedback sign is +.

Command-Line Information
Parameter: FeedbackSign
Type: string
Value: '-1' | '+1'
Default: '-1'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Save data to workspace

Save one or more linear systems to perform further linear analysis or control design.

The saved data is in a structure whose fields include:

• time — Simulation times at which the linear systems are computed.
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• values — State-space model representing the linear system. If the linear system is
computed at multiple simulation times, values is an array of state-space models.

• operatingPoints — Operating points corresponding to each linear system in
values. This field exists only if Save operating points for each linearization is
checked.

The location of the saved data structure depends upon the configuration of the Simulink
model:

• If the Simulink model is not configured to save simulation output as a single object,
the data structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the
data structure is a field in the Simulink.SimulationOutput object that contains
the logged simulation data.

To configure your model to save simulation output in a single object, in the
Simulink editor, select Simulation > Model Configuration Parameters. In the
Configuration Parameters dialog box, in the Data Import/Export pane, check Save
Simulation output as single object.

For more information about data logging in Simulink, see “Export Simulation Data” and
the “Simulink.SimulationOutput class” reference page.

Settings

Default: Off

 On
Save the computed linear system.

 Off
Do not save the computed linear system.

Dependencies

This parameter enables Variable name.

Command-Line Information
Parameter: SaveToWorkspace
Type: string
Value: 'on' | 'off'
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Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Variable name

Name of the data structure that stores one or more linear systems computed during
simulation.

The location of the saved data structure depends upon the configuration of the Simulink
model:

• If the Simulink model is not configured to save simulation output as a single object,
the data structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the
data structure is a field in the Simulink.SimulationOutput object that contains
the logged simulation data. The

The name must be unique among the variable names used in all data logging model
blocks, such as Linear Analysis Plot blocks, Model Verification blocks, Scope blocks, To
Workspace blocks, and simulation return variables such as time, states, and outputs.

For more information about data logging in Simulink, see “Export Simulation Data” and
the “Simulink.SimulationOutput class” reference page.

Settings

Default: sys

String.

Dependencies

Save data to workspace enables this parameter.

Command-Line Information
Parameter: SaveName
Type: string
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Value: sys | any string. Must be specified inside single quotes ('').
Default: 'sys'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Save operating points for each linearization

When saving linear systems to the workspace for further analysis or control design, also
save the operating point corresponding to each linearization. Using this option adds
a field named operatingPoints to the data structure that stores the saved linear
systems.

Settings

Default: Off

 On
Save the operating points.

 Off
Do not save the operating points.

Dependencies

Save data to workspace enables this parameter.

Command-Line Information
Parameter: SaveOperatingPoint
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6
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Enable assertion

Enable the block to check that bounds specified and included for assertion in the Bounds
tab are satisfied during simulation. Assertion fails if a bound is not satisfied. A warning,
reporting the assertion failure, appears at the MATLAB prompt.

If assertion fails, you can optionally specify that the block:

• Execute a MATLAB expression, specified in Simulation callback when assertion
fails (optional).

• Stop the simulation and bring that block into focus, by selecting Stop simulation
when assertion fails.

For the Linear Analysis Plots blocks, this parameter has no effect because no
bounds are included by default. If you want to use the Linear Analysis Plots blocks
for assertion, specify and include bounds in the Bounds tab.

Clearing this parameter disables assertion, i.e., the block no longer checks that specified
bounds are satisfied. The block icon also updates to indicate that assertion is disabled.

In the Configuration Parameters dialog box of the Simulink model, the Model
Verification block enabling option in the Debugging area of Data Validity node,
lets you to enable or disable all model verification blocks in a model, regardless of the
setting of this option.

Settings

Default: On

 On
Check that bounds included for assertion in the Bounds tab are satisfied during
simulation. A warning, reporting assertion failure, is displayed at the MATLAB
prompt if bounds are violated.
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 Off
Do not check that bounds included for assertion are satisfied during simulation.

Dependencies

This parameter enables:

• Simulation callback when assertion fails (optional)
• Stop simulation when assertion fails

Command-Line Information
Parameter: enabled
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Simulation callback when assertion fails (optional)

MATLAB expression to execute when assertion fails.

Because the expression is evaluated in the MATLAB workspace, define all variables used
in the expression in that workspace.

Settings

No Default

A MATLAB expression.

Dependencies

Enable assertion enables this parameter.

Command-Line Information
Parameter: callback
Type: string
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Value: '' | MATLAB expression
Default: ''

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Stop simulation when assertion fails

Stop the simulation when a bound specified in the Bounds tab is violated during
simulation, i.e., assertion fails.

If you run the simulation from the Simulink Editor, the Simulation Diagnostics window
opens to display an error message. Also, the block where the bound violation occurs is
highlighted in the model.

Settings

Default: Off

 On
Stop simulation if a bound specified in the Bounds tab is violated.

 Off
Continue simulation if a bound is violated with a warning message at the MATLAB
prompt.

Tips

• Because selecting this option stops the simulation as soon as the assertion fails,
assertion failures that might occur later during the simulation are not reported. If you
want all assertion failures to be reported, do not select this option.

Dependencies

Enable assertion enables this parameter.

Command-Line Information
Parameter: stopWhenAssertionFail
Type: string
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Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Output assertion signal

Output a Boolean signal that, at each time step, is:

• True (1) if assertion succeeds, i.e., all bounds are satisfied
• False (1) if assertion fails, i.e., a bound is violated.

The output signal data type is Boolean only if the Implement logic signals as Boolean
data option in the Optimization pane of the Configuration Parameters dialog box of the
Simulink model is selected. Otherwise, the data type of the output signal is double.

Selecting this parameter adds an output port to the block that you can connect to any
block in the model.

Settings

Default:Off

 On
Output a Boolean signal to indicate assertion status. Adds a port to the block.

 Off
Do not output a Boolean signal to indicate assertion status.

Tips

• Use this parameter to design complex assertion logic. For an example, see “Model
Verification Using Simulink Control Design and Simulink Verification Blocks” on
page 5-25.

Command-Line Information
Parameter: export
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Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Show plot on block open

Open the plot window instead of the Block Parameters dialog box when you double-click
the block in the Simulink model.

Use this parameter if you prefer to open and perform tasks, such as adding or modifying
bounds, in the plot window instead of the Block Parameters dialog box. If you want to

access the block parameters from the plot window, select Edit or click .

For more information on the plot, see Show Plot.

Settings

Default: Off

 On
Open the plot window when you double-click the block.

 Off
Open the Block Parameters dialog box when double-clicking the block.

Command-Line Information
Parameter: LaunchViewOnOpen
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”
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“Model Verification at Default Simulation Snapshot Time” on page 5-6

Show Plot

Open the plot window.

Use the plot to view:

• Linear system characteristics computed from the nonlinear Simulink model during
simulation

You must click this button before you simulate the model to view the linear
characteristics.

You can display additional characteristics, such as the peak response time and
stability margins, of the linear system by right-clicking the plot and selecting
Characteristics.

• Bounds on the linear system characteristics

You can specify bounds in the Bounds tab of the Block Parameters dialog box or
right-click the plot and select Bounds > New Bound. For more information on
the types of bounds you can specify on each plot, see “Verifiable Linear System
Characteristics” on page 5-5 in the User's Guide.

You can modify bounds by dragging the bound segment or by right-clicking the plot
and selecting Bounds > Edit Bound. Before you simulate the model, click Update
Block to update the bound value in the block parameters.

Typical tasks that you perform in the plot window include:

•
Opening the Block Parameters dialog box by clicking  or selecting Edit.

•
Finding the block that the plot window corresponds to by clicking  or selecting
View > Highlight Simulink Block. This action makes the Simulink Editor active
and highlights the block.

• Simulating the model by clicking  or selecting Simulation > Run. This action
also linearizes the portion of the model between the specified linearization input and
output.
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•
Adding legend on the linear system characteristic plot by clicking .

See Also

Check Nichols Characteristics

Tutorials

• “Visualize Bode Response of Simulink Model During Simulation” on page 2-53
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-74
• “Visualize Linear System of a Continuous-Time Model Discretized During Simulation”

on page 2-81
• Plotting Linear System Characteristics of a Chemical Reactor
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Pole-Zero Plot
Pole-zero plot of linear system approximated from nonlinear Simulink model

Library
Simulink Control Design

Description
This block is same as the Check Pole-Zero Characteristics block except for different
default parameter settings in the Bounds tab.

Compute a linear system from a Simulink model and plot the poles and zeros on a pole-
zero map.

During simulation, the software linearizes the portion of the model between specified
linearization inputs and outputs, and plots the poles and zeros of the linear system.

The Simulink model can be continuous- or discrete-time or multirate and can have time
delays. Because you can specify only one linearization input/output pair in this block, the
linear system is Single-Input Single-Output (SISO).

You can specify multiple bounds that approximate second-order characteristics on the
pole locations and view them on the plot. You can also check that the bounds are satisfied
during simulation:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts, and a warning message appears at the

MATLAB prompt. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.

During simulation, the block can also output a logical assertion signal:
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• If all bounds are satisfied, the signal is true (1).
• If a bound is not satisfied, the signal is false (0).

You can add multiple Pole-Zero Plot blocks to compute and plot the poles and zeros of
various portions of the model.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation
mode.

Parameters

The following table summarizes the Pole-Zero Plot block parameters, accessible via the
block parameter dialog box.

Task Parameters

Specify inputs and outputs
(I/Os).

In Linearizations tab:

• “Linearization inputs/
outputs” on page 7-5.

• “Click a signal in the
model to select it” on page
7-7.

Specify settings. In Linearizations tab:

• “Linearize on” on page
7-10.

• “Snapshot times” on page
7-11.

• “Trigger type” on page
7-11.

Configure linearization.

Specify algorithm options. In Algorithm Options of
Linearizations tab:

• “Enable zero-crossing
detection” on page 7-12.
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Task Parameters

• “Use exact delays” on
page 7-14.

• “Linear system sample
time” on page 7-14.

• “Sample time rate
conversion method” on
page 7-16.

• “Prewarp frequency (rad/
s)” on page 7-17.

Specify labels for linear
system I/Os and state
names.

In Labels of
Linearizations tab:

• “Use full block names” on
page 7-18.

• “Use bus signal names”
on page 7-19.

Plot the linear system. Show Plot
(Optional) Specify bounds on pole-zero for assertion. In Bounds tab:

• Include settling time
bound in assertion.

• Include percent overshoot
bound in assertion.

• Include damping ratio
bound in assertion.

• Include natural frequency
bound in assertion.
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Task Parameters

Specify assertion options (only when you specify bounds
on the linear system).

In Assertion tab:

• “Enable assertion” on
page 7-31.

• “Simulation callback
when assertion fails
(optional)” on page 7-33.

• “Stop simulation when
assertion fails” on page
7-33.

• “Output assertion signal”
on page 7-34.

Save linear system to MATLAB workspace. “Save data to workspace” on
page 7-28 in Logging tab.

Display plot window instead of block parameters dialog
box on double-clicking the block.

“Show plot on block open” on
page 7-35.

Linearization inputs/outputs

Linearization inputs and outputs that define the portion of a nonlinear Simulink model
to linearize

.If you have defined the linearization input and output in the Simulink model, the block
automatically detects these points and displays them in the Linearization inputs/

outputs area. Click  at any time to update the Linearization inputs/outputs table
with I/Os from the model. To add other analysis points:

1

Click .

The dialog box expands to display a Click a signal in the model to select it area

and a new  button.
2 Select one or more signals in the Simulink Editor.
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The selected signals appear under Model signal in the Click a signal in the
model to select it area.

3 (Optional) For buses, expand the bus signal to select individual elements.

Tip For large buses or other large lists of signals, you can enter search text for
filtering element names in the Filter by name edit box. The name match is case-
sensitive. Additionally, you can enter MATLAB “regular expression”.

To modify the filtering options, click .

Filtering Options

• “Enable regular expression” on page 7-8

• “Show filtered results as a flat list” on page 7-9
4

Click  to add the selected signals to the Linearization inputs/outputs table.
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Tip To find the location in the Simulink model corresponding to a signal in the

Linearization inputs/outputs table, select the signal in the table and click .

The table displays the following information about the selected signal:

Block : Port : Bus Element Name of the block associated with the input/output. The number
adjacent to the block name is the port number where the selected
bus signal is located. The last entry is the selected bus element
name.

Configuration Type of linearization point:

• Open-loop Input — Specifies a linearization input point after
a loop opening.

• Open-loop Output — Specifies a linearization output point
before a loop opening.

• Loop Transfer — Specifies an output point before a loop
opening followed by an input.

• Input Perturbation — Specifies an additive input to a
signal.

• Output Measurement — Takes measurement at a signal.
• Loop Break — Specifies a loop opening.
• Sensitivity — Specifies an additive input followed by an

output measurement.
• Complementary Sensitivity — Specifies an output followed

by an additive input.

Note: If you simulate the model without specifying an input or output, the software
does not compute a linear system. Instead, you see a warning message at the MATLAB
prompt.

Settings

No default
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Command-Line Information

Use getlinio and setlinio to specify linearization inputs and outputs.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Click a signal in the model to select it

Enables signal selection in the Simulink model. Appears only when you click .

When this option appears, you also see the following changes:

•
A new  button.

Use to add a selected signal as a linearization input or output in the Linearization
inputs/outputs table. For more information, see Linearization inputs/outputs.

•
 changes to .

Use to collapse the Click a signal in the model to select it area.

Settings

No default

Command-Line Information

Use the getlinio and setlinio commands to select signals as linearization inputs and
outputs.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”
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“Model Verification at Default Simulation Snapshot Time” on page 5-6

Enable regular expression

Enable the use of MATLAB regular expressions for filtering signal names. For example,
entering t$ in the Filter by name edit box displays all signals whose names end with a
lowercase t (and their immediate parents). For details, see “Regular Expressions”.

Settings

Default: On

 On
Allow use of MATLAB regular expressions for filtering signal names.

 Off
Disable use of MATLAB regular expressions for filtering signal names. Filtering
treats the text you enter in the Filter by name edit box as a literal string.

Dependencies

Selecting the Options button on the right-hand side of the Filter by name edit box ( )
enables this parameter.

Show filtered results as a flat list

Uses a flat list format to display the list of filtered signals, based on the search text in the
Filter by name edit box. The flat list format uses dot notation to reflect the hierarchy
of bus signals. The following is an example of a flat list format for a filtered set of nested
bus signals.
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Settings

Default: Off

 On
Display the filtered list of signals using a flat list format, indicating bus hierarchies
with dot notation instead of using a tree format.

 Off
Display filtered bus hierarchies using a tree format.

Dependencies

Selecting the Options button on the right-hand side of the Filter by name edit box ( )
enables this parameter.

Linearize on

When to compute the linear system during simulation.

Settings

Default: Simulation snapshots



7 Blocks — Alphabetical List

7-184

Simulation snapshots

Specific simulation time, specified in Snapshot times.

Use when you:

• Know one or more times when the model is at steady-state operating point
• Want to compute the linear systems at specific times

External trigger

Trigger-based simulation event. Specify the trigger type in Trigger type.

Use when a signal generated during simulation indicates steady-state operating
point.

Selecting this option adds a trigger port to the block. Use this port to connect the
block to the trigger signal.

For example, for an aircraft model, you might want to compute the linear system
whenever the fuel mass is a fraction of the maximum fuel mass. In this case, model
this condition as an external trigger.

Dependencies

• Setting this parameter to Simulation snapshots enables Snapshot times.
• Setting this parameter to External trigger enables Trigger type.

Command-Line Information
Parameter: LinearizeAt
Type: string
Value: 'SnapshotTimes' | 'ExternalTrigger'
Default: 'SnapshotTimes'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Snapshot times
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One or more simulation times. The linear system is computed at these times.

Settings

Default: 0

• For a different simulation time, enter the time. Use when you:

• Want to plot the linear system at a specific time
• Know the approximate time when the model reaches steady-state operating point

• For multiple simulation times, enter a vector. Use when you want to compute and plot
linear systems at multiple times.

Snapshot times must be less than or equal to the simulation time specified in the
Simulink model.

Dependencies

Selecting Simulation snapshots in Linearize on enables this parameter.

Command-Line Information
Parameter: SnapshotTimes
Type: string
Value: 0 | positive real number | vector of positive real numbers
Default: 0

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Trigger type

Trigger type of an external trigger for computing linear system.

Settings

Default: Rising edge
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Rising edge

Rising edge of the external trigger signal.
Falling edge

Falling edge of the external trigger signal.

Dependencies

Selecting External trigger in Linearize on enables this parameter.

Command-Line Information
Parameter: TriggerType
Type: string
Value: 'rising' | 'falling'
Default: 'rising'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Enable zero-crossing detection

Enable zero-crossing detection to ensure that the software computes the linear system
characteristics at the following simulation times:

• The exact snapshot times, specified in Snapshot times.

As shown in the following figure, when zero-crossing detection is enabled, the
variable-step Simulink solver simulates the model at the snapshot time Tsnap. Tsnap
may lie between the simulation time steps Tn-1 and Tn which are automatically chosen
by the solver.

Computes linear system
characteristics at this time point

TimeTn-1 TnTsnap
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• The exact times when an external trigger is detected, specified in Trigger type.

As shown in the following figure, when zero-crossing detection is enabled, the
variable-step Simulink solver simulates the model at the time, Ttrig, when the trigger
signal is detected. Ttrig may lie between the simulation time steps Tn-1 and Tn which
are automatically chosen by the solver.

Computes linear system
characteristics at this time point

Time

Amplitude

1

0
Tn-1

Tn
Ttrig

Trigger signal

For more information on zero-crossing detection, see “Zero-Crossing Detection” in the
Simulink User Guide.

Settings

Default: On

 On
Compute linear system characteristics at the exact snapshot time or exact time when
a trigger signal is detected.

This setting is ignored if the Simulink solver is fixed step.

 Off
Compute linear system characteristics at the simulation time steps that the variable-
step solver chooses. The software may not compute the linear system at the exact
snapshot time or exact time when a trigger signal is detected.

Command-Line Information
Parameter: ZeroCross
Type: string
Value: 'on' | 'off'
Default: 'on'
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See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Use exact delays

How to represent time delays in your linear model.

Use this option if you have blocks in your model that have time delays.

Settings

Default: Off

 On
Return a linear model with exact delay representations.

 Off
Return a linear model with Padé approximations of delays, as specified in your
Transport Delay and Variable Transport Delay blocks.

Command-Line Information
Parameter: UseExactDelayModel
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Linear system sample time

Sample time of the linear system computed during simulation.
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Use this parameter to:

• Compute a discrete-time system with a specific sample time from a continuous-time
system

• Resample a discrete-time system with a different sample time
• Compute a continuous-time system from a discrete-time system

When computing discrete-time systems from continuous-time systems and vice-versa,
the software uses the conversion method specified in Sample time rate conversion
method.

Settings

Default: auto

auto. Computes the sample time as:

• 0, for continuous-time models.
• For models that have blocks with different sample times (multi-rate models),

least common multiple of the sample times. For example, if you have a mix of
continuous-time and discrete-time blocks with sample times of 0, 0.2 and 0.3, the
sample time of the linear model is 0.6.

Positive finite value. Use to compute:

• A discrete-time linear system from a continuous-time system.
• A discrete-time linear system from another discrete-time system with a different

sample time

0

Use to compute a continuous-time linear system from a discrete-time model.

Command-Line Information
Parameter: SampleTime
Type: string
Value: auto | Positive finite value | 0
Default: auto

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”
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“Model Verification at Default Simulation Snapshot Time” on page 5-6

Sample time rate conversion method

Method for converting the sample time of single- or multi-rate models.

This parameter is used only when the value of Linear system sample time is not auto.

Settings

Default: Zero-Order Hold

Zero-Order Hold

Zero-order hold, where the control inputs are assumed piecewise constant over the
sampling time Ts. For more information, see “Zero-Order Hold” in Control System
Toolbox User's Guide.

This method usually performs better in time domain.
Tustin (bilinear)

Bilinear (Tustin) approximation without frequency prewarping. The software rounds
off fractional time delays to the nearest multiple of the sampling time. For more
information, see “Tustin Approximation” in Control System Toolbox User's Guide.

This method usually perform better in the frequency domain.
Tustin with Prewarping

Bilinear (Tustin) approximation with frequency prewarping. Also specify the prewarp
frequency in Prewarp frequency (rad/s). For more information, see “Tustin
Approximation” in Control System Toolbox User's Guide.

This method usually perform better in the frequency domain. Use this method to
ensure matching at frequency region of interest.

Upsampling when possible, Zero-Order Hold otherwise

Upsample a discrete-time system when possible and use Zero-Order Hold
otherwise.

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.
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Upsampling when possible, Tustin otherwise

Upsample a discrete-time system when possible and use Tustin (bilinear)
otherwise.

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Upsampling when possible, Tustin with Prewarping otherwise

Upsample a discrete-time system when possible and use Tustin with Prewarping
otherwise. Also, specify the prewarp frequency in Prewarp frequency (rad/s).

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Dependencies

Selecting either:

• Tustin with Prewarping

• Upsampling when possible, Tustin with Prewarping otherwise

enables Prewarp frequency (rad/s).

Command-Line Information
Parameter: RateConversionMethod
Type: string
Value: 'zoh' | 'tustin' | 'prewarp'| 'upsampling_zoh'|
'upsampling_tustin'| 'upsampling_prewarp'
Default: 'zoh'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Prewarp frequency (rad/s)

Prewarp frequency for Tustin method, specified in radians/second.
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Settings

Default: 10

Positive scalar value, smaller than the Nyquist frequency before and after resampling. A
value of 0 corresponds to the standard Tustin method without frequency prewarping.

Dependencies

Selecting either

• Tustin with Prewarping

• Upsampling when possible, Tustin with Prewarping otherwise

in Sample time rate conversion method enables this parameter.

Command-Line Information
Parameter: PreWarpFreq
Type: string
Value: 10 | positive scalar value
Default: 10

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Use full block names

How the state, input and output names appear in the linear system computed during
simulation.

The linear system is a state-space object and system states and input/output names
appear in following state-space object properties:

Input, Output or State Name Appears in Which State-Space Object Property

Linearization input name InputName

Linearization output name OutputName
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Input, Output or State Name Appears in Which State-Space Object Property

State names StateName

Settings

Default: Off

 On
Show state and input/output names with their path through the model hierarchy.
For example, in the chemical reactor model, a state in the Integrator1 block of the
CSTR subsystem appears with full path as scdcstr/CSTR/Integrator1.

 Off
Show only state and input/output names. Use this option when the signal name
is unique and you know where the signal is location in your Simulink model. For
example, a state in the Integrator1 block of the CSTR subsystem appears as
Integrator1.

Command-Line Information
Parameter: UseFullBlockNameLabels
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Use bus signal names

How to label signals associated with linearization inputs and outputs on buses, in the
linear system computed during simulation (applies only when you select an entire bus as
an I/O point).

Selecting an entire bus signal is not recommended. Instead, select individual bus
elements.

You cannot use this parameter when your model has mux/bus mixtures.
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Settings

Default: Off

 On
Use the signal names of the individual bus elements.

Bus signal names appear when the input and output are at the output of the
following blocks:

• Root-level inport block containing a bus object
• Bus creator block
• Subsystem block whose source traces back to one of the following blocks:

• Output of a bus creator block
• Root-level inport block by passing through only virtual or nonvirtual

subsystem boundaries

 Off
Use the bus signal channel number.

Command-Line Information
Parameter: UseBusSignalLabels
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Include settling time bound in assertion

Check that the pole locations satisfy approximate second-order bounds on the settling
time, specified in Settling time (sec) <=. The software displays a warning if the poles lie
outside the region defined by the settling time bound.
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This parameter is used for assertion only if Enable assertion in the Assertion tab is
selected.

You can specify multiple settling time bounds on the linear system. The bounds also
appear on the pole-zero plot. If you clear Enable assertion, the bounds are not used for
assertion but continue to appear on the plot.

Settings

Default:

• Off for Pole-Zero Plot block.
• On for Check Pole-Zero Characteristics block.

 On
Check that each pole lies in the region defined by the settling time bound, during
simulation.

 Off
Do not check that each pole lies in the region defined by the settling time bound,
during simulation.

Tips

• Clearing this parameter disables the settling time bounds and the software stops
checking that the bounds are satisfied during simulation. The bounds are also greyed
out on the plot.
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• If you also specify other bounds, such as percent overshoot, damping ratio or natural
frequency, but want to exclude the settling time bound from assertion, clear this
parameter.

• To only view the bounds on the plot, clear Enable assertion.

Command-Line Information
Parameter: EnableSettlingTime
Type: string
Value: 'on' | 'off'
Default: 'off' for Pole-Zero Plot block, 'on' for Check Pole-Zero Characteristics block.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Settling time (sec) <=

Settling time, in seconds, of the second-order system.

Settings

Default:
[] for Pole-Zero Plot block
1 for Check Pole-Zero Characteristics block

• Finite positive real scalar for one bound.
• Cell array of finite positive real scalars for multiple bounds.

Tips

• To assert that the settling time bounds are satisfied, select both Include settling
time bound in assertion and Enable assertion.

• You can add or modify settling time bounds from the plot window:

• To add a new settling time bound, right-click the plot, and select Bounds > New
Bound. Specify the new value in Settling time.

• To modify a settling time bound, drag the corresponding bound segment.
Alternatively, right-click the bound and select Bounds > Edit. Specify the new
value in Settling time (sec) <.



 Pole-Zero Plot

7-197

You must click Update Block before simulating the model.

Command-Line Information
Parameter: SettlingTime
Type: string
Value: [] | 1 | finite positive real scalar| cell array of finite
positive real scalars. Must be specified inside single quotes ('').
Default: '[]' for Pole-Zero Plot block, '1' for Check Pole-Zero Characteristics block.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Include percent overshoot bound in assertion

Check that the pole locations satisfy approximate second-order bounds on the percent
overshoot, specified in Percent overshoot <=. The software displays a warning if the
poles lie outside the region defined by the percent overshoot bound.

This parameter is used for assertion only if Enable assertion in the Assertion tab is
selected.

You can specify multiple percent overshoot bounds on the linear system. The bounds also
appear on the pole-zero plot. If you clear Enable assertion, the bounds are not used for
assertion but continues to appear on the plot.

Settings

Default:
Off for Pole-Zero Plot block.
On for Check Pole-Zero Characteristics block.

 On
Check that each pole lies in the region defined by the percent overshoot bound,
during simulation.

 Off
Do not check that each pole lies in the region defined by the percent overshoot bound,
during simulation.
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Tips

• Clearing this parameter disables the percent overshoot bounds and the software stops
checking that the bounds are satisfied during simulation. The bounds are also greyed
out on the plot.

• If you specify other bounds, such as settling time, damping ratio or natural frequency,
but want to exclude the percent overshoot bound from assertion, clear this parameter.

• To only view the bounds on the plot, clear Enable assertion.

Command-Line Information
Parameter: EnablePercentOvershoot
Type: string
Value: 'on' | 'off'
Default: 'off' for Pole-Zero Plot block, 'on' for Check Pole-Zero Characteristics block.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6
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Percent overshoot <=

Percent overshoot of the second-order system.

Settings

Default:
[] for Pole-Zero Plot block
10 for Check Pole-Zero Characteristics block

Minimum: 0

Maximum: 100

• Real scalar for single percent overshoot bound.
• Cell array of real scalars for multiple percent overshoot bounds.

Tips

• The percent overshoot p.o can be expressed in terms of the damping ratio ζ, as:

p o e. . .
/= - -

100
1

2pz z

• To assert that the percent overshoot bounds are satisfied, select both Include
percent overshoot bound in assertion and Enable assertion.

• You can add or modify percent overshoot bounds from the plot window:

• To add a new percent overshoot bound, right-click the plot, and select Bounds >
New Bound. Select Percent overshoot in Design requirement type and
specify the value in Percent overshoot <.

• To modify a percent overshoot bound, drag the corresponding bound segment.
Alternatively, right-click the bound, and select Bounds > Edit. Specify the new
damping ratio for the corresponding percent overshoot value in Damping ratio >.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: PercentOvershoot
Type: string
Value: [] | 10 | real scalar between 0 and 100 | cell array of real
scalars between 0 and 100. Must be specified inside single quotes ('').
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Default: '[]' for Pole-Zero Plot block, '10' for Check Pole-Zero Characteristics block.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Include damping ratio bound in assertion

Check that the pole locations satisfy approximate second-order bounds on the damping
ratio, specified in Damping ratio >=. The software displays a warning if the poles lie
outside the region defined by the damping ratio bound.

This parameter is used for assertion only if Enable assertion in the Assertion tab is
selected.

You can specify multiple damping ratio bounds on the linear system. The bounds also
appear on the pole-zero plot. If you clear Enable assertion, the bounds are not used for
assertion but continues to appear on the plot.

Settings

Default: Off

 On
Check that each pole lies in the region defined by the damping ratio bound, during
simulation.

 Off
Do not check that each pole lies in the region defined by the damping ratio bound,
during simulation.

Tips

• Clearing this parameter disables the damping ratio bounds and the software stops
checking that the bounds are satisfied during simulation. The bounds are also greyed
out on the plot.
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• If you specify other bounds, such as settling time, percent overshoot or natural
frequency, but want to exclude the damping ratio bound from assertion, clear this
parameter.

• To only view the bounds on the plot, clear Enable assertion.

Command-Line Information
Parameter: EnableDampingRatio
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Damping ratio >=

Damping ratio of the second-order system.
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Settings

Default: []

Minimum: 0

Maximum: 1

• Finite positive real scalar for single damping ratio bound.
• Cell array of finite positive real scalars for multiple damping ratio bounds.

Tips

• The damping ratio ζ, and percent overshoot p.o are related as:

p o e. . .
/= - -

100
1

2pz z

• To assert that the damping ratio bounds are satisfied, select both Include damping
ratio bound in assertion and Enable assertion.

• You can add or modify damping ratio bounds from the plot window:

• To add a new damping ratio bound, right-click the plot and select Bounds > New
Bound. Select Damping ratio in Design requirement type and specify the
value in Damping ratio >.

• To modify a damping ratio bound, drag the corresponding bound segment or right-
click it and select Bounds > Edit. Specify the new value in Damping ratio >.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: DampingRatio
Type: string
Value: [] | finite positive real scalar between 0 and 1 | cell array
of finite positive real scalars between 0 and 1 . Must be specified inside
single quotes ('').
Default: '[]'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”



 Pole-Zero Plot

7-203

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Include natural frequency bound in assertion

Check that the pole locations satisfy approximate second-order bounds on the natural
frequency, specified in Natural frequency (rad/sec). The natural frequency bound can
be greater than, less than or equal one or more specific values. The software displays a
warning if the pole locations do not satisfy the region defined by the natural frequency
bound.

This parameter is used for assertion only if Enable assertion in the Assertion tab is
selected.

You can specify multiple natural frequency bounds on the linear system. The bounds also
appear on the pole-zero plot. If Enable assertion is cleared, the bounds are not used for
assertion but continue to appear on the plot.

Settings

Default: Off

 On
Check that each pole lies in the region defined by the natural frequency bound,
during simulation.

 Off
Do not check that each pole lies in the region defined by the natural frequency bound,
during simulation.

Tips

• Clearing this parameter disables the natural frequency bounds and the software stops
checking that the bounds are satisfied during simulation. The bounds are also greyed
out on the plot.
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• If you also specify settling time, percent overshoot or damping ratio bounds and want
to exclude the natural frequency bound from assertion, clear this parameter.

• To only view the bounds on the plot, clear Enable assertion.

Command-Line Information
Parameter: NaturalFrequencyBound
Type: string
Value: 'on' | 'off'
Default: 'off'

Natural frequency (rad/sec)

Natural frequency of the second-order system.

Settings

Default: []

• Finite positive real scalar for single natural frequency bound.
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• Cell array of finite positive real scalars for multiple natural frequency bounds.

Tips

• To assert that the natural frequency bounds are satisfied, select both Include
natural frequency bound in assertion and Enable assertion.

• You can add or modify natural frequency bounds from the plot window:

• To add a new natural frequency bound, right-click the plot and select Bounds >
New Bound. Select Natural frequency in Design requirement type and
specify the natural frequency in Natural frequency.

• To modify a natural frequency bound, drag the corresponding bound segment
or right-click it and select Bounds > Edit. Specify the new value in Natural
frequency.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: NaturalFrequency
Type: string
Value: [] | positive finite real scalar | cell array of positive finite
real scalars. Must be specified inside single quotes ('').
Default: '[]'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Save data to workspace

Save one or more linear systems to perform further linear analysis or control design.

The saved data is in a structure whose fields include:

• time — Simulation times at which the linear systems are computed.
• values — State-space model representing the linear system. If the linear system is

computed at multiple simulation times, values is an array of state-space models.
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• operatingPoints — Operating points corresponding to each linear system in
values. This field exists only if Save operating points for each linearization is
checked.

The location of the saved data structure depends upon the configuration of the Simulink
model:

• If the Simulink model is not configured to save simulation output as a single object,
the data structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the
data structure is a field in the Simulink.SimulationOutput object that contains
the logged simulation data.

To configure your model to save simulation output in a single object, in the
Simulink editor, select Simulation > Model Configuration Parameters. In the
Configuration Parameters dialog box, in the Data Import/Export pane, check Save
Simulation output as single object.

For more information about data logging in Simulink, see “Export Simulation Data” and
the “Simulink.SimulationOutput class” reference page.

Settings

Default: Off

 On
Save the computed linear system.

 Off
Do not save the computed linear system.

Dependencies

This parameter enables Variable name.

Command-Line Information
Parameter: SaveToWorkspace
Type: string
Value: 'on' | 'off'
Default: 'off'
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See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Variable name

Name of the data structure that stores one or more linear systems computed during
simulation.

The location of the saved data structure depends upon the configuration of the Simulink
model:

• If the Simulink model is not configured to save simulation output as a single object,
the data structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the
data structure is a field in the Simulink.SimulationOutput object that contains
the logged simulation data. The

The name must be unique among the variable names used in all data logging model
blocks, such as Linear Analysis Plot blocks, Model Verification blocks, Scope blocks, To
Workspace blocks, and simulation return variables such as time, states, and outputs.

For more information about data logging in Simulink, see “Export Simulation Data” and
the “Simulink.SimulationOutput class” reference page.

Settings

Default: sys

String.

Dependencies

Save data to workspace enables this parameter.

Command-Line Information
Parameter: SaveName
Type: string
Value: sys | any string. Must be specified inside single quotes ('').
Default: 'sys'
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See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Save operating points for each linearization

When saving linear systems to the workspace for further analysis or control design, also
save the operating point corresponding to each linearization. Using this option adds
a field named operatingPoints to the data structure that stores the saved linear
systems.

Settings

Default: Off

 On
Save the operating points.

 Off
Do not save the operating points.

Dependencies

Save data to workspace enables this parameter.

Command-Line Information
Parameter: SaveOperatingPoint
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Enable assertion
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Enable the block to check that bounds specified and included for assertion in the Bounds
tab are satisfied during simulation. Assertion fails if a bound is not satisfied. A warning,
reporting the assertion failure, appears at the MATLAB prompt.

If assertion fails, you can optionally specify that the block:

• Execute a MATLAB expression, specified in Simulation callback when assertion
fails (optional).

• Stop the simulation and bring that block into focus, by selecting Stop simulation
when assertion fails.

For the Linear Analysis Plots blocks, this parameter has no effect because no
bounds are included by default. If you want to use the Linear Analysis Plots blocks
for assertion, specify and include bounds in the Bounds tab.

Clearing this parameter disables assertion, i.e., the block no longer checks that specified
bounds are satisfied. The block icon also updates to indicate that assertion is disabled.

In the Configuration Parameters dialog box of the Simulink model, the Model
Verification block enabling option in the Debugging area of Data Validity node,
lets you to enable or disable all model verification blocks in a model, regardless of the
setting of this option.

Settings

Default: On

 On
Check that bounds included for assertion in the Bounds tab are satisfied during
simulation. A warning, reporting assertion failure, is displayed at the MATLAB
prompt if bounds are violated.

 Off
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Do not check that bounds included for assertion are satisfied during simulation.

Dependencies

This parameter enables:

• Simulation callback when assertion fails (optional)
• Stop simulation when assertion fails

Command-Line Information
Parameter: enabled
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Simulation callback when assertion fails (optional)

MATLAB expression to execute when assertion fails.

Because the expression is evaluated in the MATLAB workspace, define all variables used
in the expression in that workspace.

Settings

No Default

A MATLAB expression.

Dependencies

Enable assertion enables this parameter.

Command-Line Information
Parameter: callback
Type: string
Value: '' | MATLAB expression
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Default: ''

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Stop simulation when assertion fails

Stop the simulation when a bound specified in the Bounds tab is violated during
simulation, i.e., assertion fails.

If you run the simulation from the Simulink Editor, the Simulation Diagnostics window
opens to display an error message. Also, the block where the bound violation occurs is
highlighted in the model.

Settings

Default: Off

 On
Stop simulation if a bound specified in the Bounds tab is violated.

 Off
Continue simulation if a bound is violated with a warning message at the MATLAB
prompt.

Tips

• Because selecting this option stops the simulation as soon as the assertion fails,
assertion failures that might occur later during the simulation are not reported. If you
want all assertion failures to be reported, do not select this option.

Dependencies

Enable assertion enables this parameter.

Command-Line Information
Parameter: stopWhenAssertionFail
Type: string
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Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Output assertion signal

Output a Boolean signal that, at each time step, is:

• True (1) if assertion succeeds, i.e., all bounds are satisfied
• False (1) if assertion fails, i.e., a bound is violated.

The output signal data type is Boolean only if the Implement logic signals as Boolean
data option in the Optimization pane of the Configuration Parameters dialog box of the
Simulink model is selected. Otherwise, the data type of the output signal is double.

Selecting this parameter adds an output port to the block that you can connect to any
block in the model.

Settings

Default:Off

 On
Output a Boolean signal to indicate assertion status. Adds a port to the block.

 Off
Do not output a Boolean signal to indicate assertion status.

Tips

• Use this parameter to design complex assertion logic. For an example, see “Model
Verification Using Simulink Control Design and Simulink Verification Blocks” on
page 5-25.

Command-Line Information
Parameter: export
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Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Show plot on block open

Open the plot window instead of the Block Parameters dialog box when you double-click
the block in the Simulink model.

Use this parameter if you prefer to open and perform tasks, such as adding or modifying
bounds, in the plot window instead of the Block Parameters dialog box. If you want to

access the block parameters from the plot window, select Edit or click .

For more information on the plot, see Show Plot.

Settings

Default: Off

 On
Open the plot window when you double-click the block.

 Off
Open the Block Parameters dialog box when double-clicking the block.

Command-Line Information
Parameter: LaunchViewOnOpen
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”
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“Model Verification at Default Simulation Snapshot Time” on page 5-6

Show Plot

Open the plot window.

Use the plot to view:

• Linear system characteristics computed from the nonlinear Simulink model during
simulation

You must click this button before you simulate the model to view the linear
characteristics.

You can display additional characteristics, such as the peak response time and
stability margins, of the linear system by right-clicking the plot and selecting
Characteristics.

• Bounds on the linear system characteristics

You can specify bounds in the Bounds tab of the Block Parameters dialog box or
right-click the plot and select Bounds > New Bound. For more information on
the types of bounds you can specify on each plot, see “Verifiable Linear System
Characteristics” on page 5-5 in the User's Guide.

You can modify bounds by dragging the bound segment or by right-clicking the plot
and selecting Bounds > Edit Bound. Before you simulate the model, click Update
Block to update the bound value in the block parameters.

Typical tasks that you perform in the plot window include:

•
Opening the Block Parameters dialog box by clicking  or selecting Edit.

•
Finding the block that the plot window corresponds to by clicking  or selecting
View > Highlight Simulink Block. This action makes the Simulink Editor active
and highlights the block.

• Simulating the model by clicking  or selecting Simulation > Run. This action
also linearizes the portion of the model between the specified linearization input and
output.
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•
Adding legend on the linear system characteristic plot by clicking .

See Also

Check Pole-Zero Characteristics

Tutorials

• “Visualize Bode Response of Simulink Model During Simulation” on page 2-53
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-74
• “Visualize Linear System of a Continuous-Time Model Discretized During Simulation”

on page 2-81
• Plotting Linear System Characteristics of a Chemical Reactor



7 Blocks — Alphabetical List

7-216

Singular Value Plot
Singular value plot of linear system approximated from nonlinear Simulink model

Library

Simulink Control Design

Description

This block is same as the Check Singular Value Characteristics block except for different
default parameter settings in the Bounds tab.

Compute a linear system from a nonlinear Simulink model and plot the linear system on
a singular value plot.

During simulation, the software linearizes the portion of the model between specified
linearization inputs and outputs, and plots the singular values of the linear system.

The Simulink model can be continuous- or discrete-time or multirate, and can have time
delays. The linear system can be Single-Input Single-Output (SISO) or Multi-Input
Multi-Output (MIMO). For MIMO systems, the plots for all input/output combinations
are displayed.

You can specify piecewise-linear frequency-dependent upper and lower singular value
bounds and view them on the plot. You can also check that the bounds are satisfied
during simulation:

• If all bounds are satisfied, the block does nothing.
• If a bound is not satisfied, the block asserts, and a warning message appears at the

MATLAB prompt. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and bring that block into focus.



 Singular Value Plot

7-217

During simulation, the block can also output a logical assertion signal:

• If all bounds are satisfied, the signal is true (1).
• If a bound is not satisfied, the signal is false (0).

For MIMO systems, the bounds apply to the singular values of linear systems computed
for all input/output combinations.

You can add multiple Singular Value Plot blocks to compute and plot the singular values
of various portions of the model.

You can save the linear system as a variable in the MATLAB workspace.

The block does not support code generation and can be used only in Normal simulation
mode.

Parameters

The following table summarizes the Singular Value Plot block parameters, accessible via
the block parameter dialog box.

Task Parameters

Specify inputs and outputs
(I/Os).

In Linearizations tab:

• “Linearization inputs/
outputs” on page 7-5.

• “Click a signal in the
model to select it” on page
7-7.

Configure linearization.

Specify settings. In Linearizations tab:

• “Linearize on” on page
7-10.

• “Snapshot times” on page
7-11.

• “Trigger type” on page
7-11.
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Task Parameters

Specify algorithm options. In Algorithm Options of
Linearizations tab:

• “Enable zero-crossing
detection” on page 7-12.

• “Use exact delays” on
page 7-14.

• “Linear system sample
time” on page 7-14.

• “Sample time rate
conversion method” on
page 7-16.

• “Prewarp frequency (rad/
s)” on page 7-17.

Specify labels for linear
system I/Os and state
names.

In Labels of
Linearizations tab:

• “Use full block names” on
page 7-18.

• “Use bus signal names”
on page 7-19.

Plot the linear system. Show Plot
(Optional) Specify bounds on singular values for
assertion.

In Bounds tab:

• Include upper singular
value bound in assertion.

• Include lower singular
value bound in assertion.
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Task Parameters

Specify assertion options (only when you specify bounds
on the linear system).

In Assertion tab:

• “Enable assertion” on
page 7-31.

• “Simulation callback
when assertion fails
(optional)” on page 7-33.

• “Stop simulation when
assertion fails” on page
7-33.

• “Output assertion signal”
on page 7-34.

Save linear system to MATLAB workspace. “Save data to workspace” on
page 7-28 in Logging tab.

Display plot window instead of block parameters dialog
box on double-clicking the block.

“Show plot on block open” on
page 7-35.

Linearization inputs/outputs

Linearization inputs and outputs that define the portion of a nonlinear Simulink model
to linearize

.If you have defined the linearization input and output in the Simulink model, the block
automatically detects these points and displays them in the Linearization inputs/

outputs area. Click  at any time to update the Linearization inputs/outputs table
with I/Os from the model. To add other analysis points:

1

Click .

The dialog box expands to display a Click a signal in the model to select it area

and a new  button.
2 Select one or more signals in the Simulink Editor.
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The selected signals appear under Model signal in the Click a signal in the
model to select it area.

3 (Optional) For buses, expand the bus signal to select individual elements.

Tip For large buses or other large lists of signals, you can enter search text for
filtering element names in the Filter by name edit box. The name match is case-
sensitive. Additionally, you can enter MATLAB “regular expression”.

To modify the filtering options, click .

Filtering Options

• “Enable regular expression” on page 7-8

• “Show filtered results as a flat list” on page 7-9
4

Click  to add the selected signals to the Linearization inputs/outputs table.



 Singular Value Plot

7-221

Tip To find the location in the Simulink model corresponding to a signal in the

Linearization inputs/outputs table, select the signal in the table and click .

The table displays the following information about the selected signal:

Block : Port : Bus Element Name of the block associated with the input/output. The number
adjacent to the block name is the port number where the selected
bus signal is located. The last entry is the selected bus element
name.

Configuration Type of linearization point:

• Open-loop Input — Specifies a linearization input point after
a loop opening.

• Open-loop Output — Specifies a linearization output point
before a loop opening.

• Loop Transfer — Specifies an output point before a loop
opening followed by an input.

• Input Perturbation — Specifies an additive input to a
signal.

• Output Measurement — Takes measurement at a signal.
• Loop Break — Specifies a loop opening.
• Sensitivity — Specifies an additive input followed by an

output measurement.
• Complementary Sensitivity — Specifies an output followed

by an additive input.

Note: If you simulate the model without specifying an input or output, the software
does not compute a linear system. Instead, you see a warning message at the MATLAB
prompt.

Settings

No default
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Command-Line Information

Use getlinio and setlinio to specify linearization inputs and outputs.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Click a signal in the model to select it

Enables signal selection in the Simulink model. Appears only when you click .

When this option appears, you also see the following changes:

•
A new  button.

Use to add a selected signal as a linearization input or output in the Linearization
inputs/outputs table. For more information, see Linearization inputs/outputs.

•
 changes to .

Use to collapse the Click a signal in the model to select it area.

Settings

No default

Command-Line Information

Use the getlinio and setlinio commands to select signals as linearization inputs and
outputs.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”
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“Model Verification at Default Simulation Snapshot Time” on page 5-6

Enable regular expression

Enable the use of MATLAB regular expressions for filtering signal names. For example,
entering t$ in the Filter by name edit box displays all signals whose names end with a
lowercase t (and their immediate parents). For details, see “Regular Expressions”.

Settings

Default: On

 On
Allow use of MATLAB regular expressions for filtering signal names.

 Off
Disable use of MATLAB regular expressions for filtering signal names. Filtering
treats the text you enter in the Filter by name edit box as a literal string.

Dependencies

Selecting the Options button on the right-hand side of the Filter by name edit box ( )
enables this parameter.

Show filtered results as a flat list

Uses a flat list format to display the list of filtered signals, based on the search text in the
Filter by name edit box. The flat list format uses dot notation to reflect the hierarchy
of bus signals. The following is an example of a flat list format for a filtered set of nested
bus signals.
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Settings

Default: Off

 On
Display the filtered list of signals using a flat list format, indicating bus hierarchies
with dot notation instead of using a tree format.

 Off
Display filtered bus hierarchies using a tree format.

Dependencies

Selecting the Options button on the right-hand side of the Filter by name edit box ( )
enables this parameter.

Linearize on

When to compute the linear system during simulation.

Settings

Default: Simulation snapshots
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Simulation snapshots

Specific simulation time, specified in Snapshot times.

Use when you:

• Know one or more times when the model is at steady-state operating point
• Want to compute the linear systems at specific times

External trigger

Trigger-based simulation event. Specify the trigger type in Trigger type.

Use when a signal generated during simulation indicates steady-state operating
point.

Selecting this option adds a trigger port to the block. Use this port to connect the
block to the trigger signal.

For example, for an aircraft model, you might want to compute the linear system
whenever the fuel mass is a fraction of the maximum fuel mass. In this case, model
this condition as an external trigger.

Dependencies

• Setting this parameter to Simulation snapshots enables Snapshot times.
• Setting this parameter to External trigger enables Trigger type.

Command-Line Information
Parameter: LinearizeAt
Type: string
Value: 'SnapshotTimes' | 'ExternalTrigger'
Default: 'SnapshotTimes'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Snapshot times

One or more simulation times. The linear system is computed at these times.
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Settings

Default: 0

• For a different simulation time, enter the time. Use when you:

• Want to plot the linear system at a specific time
• Know the approximate time when the model reaches steady-state operating point

• For multiple simulation times, enter a vector. Use when you want to compute and plot
linear systems at multiple times.

Snapshot times must be less than or equal to the simulation time specified in the
Simulink model.

Dependencies

Selecting Simulation snapshots in Linearize on enables this parameter.

Command-Line Information
Parameter: SnapshotTimes
Type: string
Value: 0 | positive real number | vector of positive real numbers
Default: 0

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Trigger type

Trigger type of an external trigger for computing linear system.

Settings

Default: Rising edge

Rising edge

Rising edge of the external trigger signal.
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Falling edge

Falling edge of the external trigger signal.

Dependencies

Selecting External trigger in Linearize on enables this parameter.

Command-Line Information
Parameter: TriggerType
Type: string
Value: 'rising' | 'falling'
Default: 'rising'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Enable zero-crossing detection

Enable zero-crossing detection to ensure that the software computes the linear system
characteristics at the following simulation times:

• The exact snapshot times, specified in Snapshot times.

As shown in the following figure, when zero-crossing detection is enabled, the
variable-step Simulink solver simulates the model at the snapshot time Tsnap. Tsnap
may lie between the simulation time steps Tn-1 and Tn which are automatically chosen
by the solver.

Computes linear system
characteristics at this time point

TimeTn-1 TnTsnap

• The exact times when an external trigger is detected, specified in Trigger type.

As shown in the following figure, when zero-crossing detection is enabled, the
variable-step Simulink solver simulates the model at the time, Ttrig, when the trigger
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signal is detected. Ttrig may lie between the simulation time steps Tn-1 and Tn which
are automatically chosen by the solver.

Computes linear system
characteristics at this time point

Time

Amplitude

1

0
Tn-1

Tn
Ttrig

Trigger signal

For more information on zero-crossing detection, see “Zero-Crossing Detection” in the
Simulink User Guide.

Settings

Default: On

 On
Compute linear system characteristics at the exact snapshot time or exact time when
a trigger signal is detected.

This setting is ignored if the Simulink solver is fixed step.

 Off
Compute linear system characteristics at the simulation time steps that the variable-
step solver chooses. The software may not compute the linear system at the exact
snapshot time or exact time when a trigger signal is detected.

Command-Line Information
Parameter: ZeroCross
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6
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Use exact delays

How to represent time delays in your linear model.

Use this option if you have blocks in your model that have time delays.

Settings

Default: Off

 On
Return a linear model with exact delay representations.

 Off
Return a linear model with Padé approximations of delays, as specified in your
Transport Delay and Variable Transport Delay blocks.

Command-Line Information
Parameter: UseExactDelayModel
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Linear system sample time

Sample time of the linear system computed during simulation.

Use this parameter to:

• Compute a discrete-time system with a specific sample time from a continuous-time
system

• Resample a discrete-time system with a different sample time
• Compute a continuous-time system from a discrete-time system
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When computing discrete-time systems from continuous-time systems and vice-versa,
the software uses the conversion method specified in Sample time rate conversion
method.

Settings

Default: auto

auto. Computes the sample time as:

• 0, for continuous-time models.
• For models that have blocks with different sample times (multi-rate models),

least common multiple of the sample times. For example, if you have a mix of
continuous-time and discrete-time blocks with sample times of 0, 0.2 and 0.3, the
sample time of the linear model is 0.6.

Positive finite value. Use to compute:

• A discrete-time linear system from a continuous-time system.
• A discrete-time linear system from another discrete-time system with a different

sample time

0

Use to compute a continuous-time linear system from a discrete-time model.

Command-Line Information
Parameter: SampleTime
Type: string
Value: auto | Positive finite value | 0
Default: auto

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Sample time rate conversion method

Method for converting the sample time of single- or multi-rate models.

This parameter is used only when the value of Linear system sample time is not auto.
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Settings

Default: Zero-Order Hold

Zero-Order Hold

Zero-order hold, where the control inputs are assumed piecewise constant over the
sampling time Ts. For more information, see “Zero-Order Hold” in Control System
Toolbox User's Guide.

This method usually performs better in time domain.
Tustin (bilinear)

Bilinear (Tustin) approximation without frequency prewarping. The software rounds
off fractional time delays to the nearest multiple of the sampling time. For more
information, see “Tustin Approximation” in Control System Toolbox User's Guide.

This method usually perform better in the frequency domain.
Tustin with Prewarping

Bilinear (Tustin) approximation with frequency prewarping. Also specify the prewarp
frequency in Prewarp frequency (rad/s). For more information, see “Tustin
Approximation” in Control System Toolbox User's Guide.

This method usually perform better in the frequency domain. Use this method to
ensure matching at frequency region of interest.

Upsampling when possible, Zero-Order Hold otherwise

Upsample a discrete-time system when possible and use Zero-Order Hold
otherwise.

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Upsampling when possible, Tustin otherwise

Upsample a discrete-time system when possible and use Tustin (bilinear)
otherwise.

You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Upsampling when possible, Tustin with Prewarping otherwise

Upsample a discrete-time system when possible and use Tustin with Prewarping
otherwise. Also, specify the prewarp frequency in Prewarp frequency (rad/s).
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You can upsample only when you convert discrete-time system to a new sample time
that is an integer-value-times faster than the sampling time of the original system.

Dependencies

Selecting either:

• Tustin with Prewarping

• Upsampling when possible, Tustin with Prewarping otherwise

enables Prewarp frequency (rad/s).

Command-Line Information
Parameter: RateConversionMethod
Type: string
Value: 'zoh' | 'tustin' | 'prewarp'| 'upsampling_zoh'|
'upsampling_tustin'| 'upsampling_prewarp'
Default: 'zoh'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Prewarp frequency (rad/s)

Prewarp frequency for Tustin method, specified in radians/second.

Settings

Default: 10

Positive scalar value, smaller than the Nyquist frequency before and after resampling. A
value of 0 corresponds to the standard Tustin method without frequency prewarping.

Dependencies

Selecting either

• Tustin with Prewarping

• Upsampling when possible, Tustin with Prewarping otherwise



 Singular Value Plot

7-233

in Sample time rate conversion method enables this parameter.

Command-Line Information
Parameter: PreWarpFreq
Type: string
Value: 10 | positive scalar value
Default: 10

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Use full block names

How the state, input and output names appear in the linear system computed during
simulation.

The linear system is a state-space object and system states and input/output names
appear in following state-space object properties:

Input, Output or State Name Appears in Which State-Space Object Property

Linearization input name InputName

Linearization output name OutputName

State names StateName

Settings

Default: Off

 On
Show state and input/output names with their path through the model hierarchy.
For example, in the chemical reactor model, a state in the Integrator1 block of the
CSTR subsystem appears with full path as scdcstr/CSTR/Integrator1.

 Off
Show only state and input/output names. Use this option when the signal name
is unique and you know where the signal is location in your Simulink model. For
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example, a state in the Integrator1 block of the CSTR subsystem appears as
Integrator1.

Command-Line Information
Parameter: UseFullBlockNameLabels
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Use bus signal names

How to label signals associated with linearization inputs and outputs on buses, in the
linear system computed during simulation (applies only when you select an entire bus as
an I/O point).

Selecting an entire bus signal is not recommended. Instead, select individual bus
elements.

You cannot use this parameter when your model has mux/bus mixtures.

Settings

Default: Off

 On
Use the signal names of the individual bus elements.

Bus signal names appear when the input and output are at the output of the
following blocks:

• Root-level inport block containing a bus object
• Bus creator block
• Subsystem block whose source traces back to one of the following blocks:

• Output of a bus creator block
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• Root-level inport block by passing through only virtual or nonvirtual
subsystem boundaries

 Off
Use the bus signal channel number.

Command-Line Information
Parameter: UseBusSignalLabels
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Include upper singular value bound in assertion

Check that the singular values satisfy upper bounds, specified in Frequencies (rad/
sec) and Magnitude (dB), during simulation. The software displays a warning during
simulation if the singular values violate the upper bound.

This parameter is used for assertion only if Enable assertion in the Assertion tab is
selected.

You can specify multiple upper singular value bounds on the linear system. The bounds
also appear on the singular value plot. If you clear Enable assertion, the bounds are not
used for assertion but continue to appear on the plot.

Settings

Default:

• Off for Singular Value Plot block.
• On for Check Singular Value Characteristics block.

 On
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Check that the singular value satisfies the specified upper bounds, during
simulation.

 Off
Do not check that the singular value satisfies the specified upper bounds, during
simulation.

Tips

• Clearing this parameter disables the upper singular value bounds and the software
stops checking that the bounds are satisfied during simulation. The bound segments
are also greyed out on the plot.

• If you specify both upper and lower singular value bounds but want to include only
the lower bounds for assertion, clear this parameter.

• To only view the bound on the plot, clear Enable assertion.

Command-Line Information
Parameter: EnableUpperBound
Type: string
Value: 'on' | 'off'
Default: 'off' for Singular Value Plot block, 'on' for Check Singular Value
Characteristics block.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6
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Frequencies (rad/sec)

Frequencies for one or more upper singular value bound segments, specified in radians/
sec.

Specify the corresponding magnitudes in Magnitude (dB).

Settings

Default:
[] for Singular Value Plot block
[0.1 100] for Check Singular Value Characteristics block

Must be specified as start and end frequencies:

• Positive finite numbers for a single bound with one edge
• Matrix of positive finite numbers for a single bound with multiple edges

For example, type [0.1 1;1 10] for two edges at frequencies [0.1 1] and [1 10].
• Cell array of matrices with positive finite numbers for multiple bounds.

Tips

• To assert that magnitudes that correspond to the frequencies are satisfied, select both
Include upper singular value bound in assertion and Enable assertion.

• You can add or modify frequencies from the plot window:

• To add new frequencies, right-click the plot, and select Bounds > New Bound.
Select Upper gain limit in Design requirement type, and specify the
frequencies in the Frequency column. Specify the corresponding magnitudes in
the Magnitude column.

• To modify the frequencies, drag the bound segment. Alternatively, right-click the
segment, and select Bounds > Edit Bound. Specify the new frequencies in the
Frequency column.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: UpperBoundFrequencies
Type: string
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Value: [] | [0.1 100] | positive finite numbers | matrix of positive
finite numbers | cell array of matrices with positive finite numbers.
Must be specified inside single quotes ('').
Default: '[]' for Singular Value Plot block, '[0.1 100]' for Check Singular Value
Characteristics block.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Magnitudes (dB)

Magnitude values for one or more upper singular value bound segments, specified in
decibels.

Specify the corresponding frequencies in Frequencies (rad/sec).

Settings

Default:
[] for Singular Value Plot block
[0 0] for Check Singular Value Characteristics block

Must be specified as start and end magnitudes:

• Finite numbers for a single bound with one edge
• Matrix of finite numbers for a single bound with multiple edges

For example, type [0 0; 10 10] for two edges at magnitudes [0 0] and [10 10].
• Cell array of matrices with finite numbers for multiple bounds

Tips

• To assert that magnitudes are satisfied, select both Include upper singular value
bound in assertion and Enable assertion.

• You can add or modify magnitudes from the plot window:

• To add a new magnitude, right-click the plot, and select Bounds > New Bound.
Select Upper gain limit in Design requirement type, and specify the
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magnitude in the Magnitude column. Specify the corresponding frequencies in
the Frequency column.

• To modify the magnitudes, drag the bound segment. Alternatively, right-click the
segment, and select Bounds > Edit Bound. Specify the new magnitudes in the
Magnitude column.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: UpperBoundMagnitudes
Type: string
Value: [] | [0 0] | finite numbers | matrix of finite numbers | cell array
of matrices with finite numbers. Must be specified inside single quotes ('').
Default: '[]' for Singular Value Plot block, '[0 0]' for Check Singular Value
Characteristics block.

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Include lower singular value bound in assertion

Check that the singular values satisfy lower bounds, specified in Frequencies (rad/
sec) and Magnitude (dB), during simulation. The software displays a warning if the
singular values violate the lower bound.

This parameter is used for assertion only if Enable assertion in the Assertion tab is
selected.

You can specify multiple lower singular value bounds on the linear system. The bounds
also appear on the singular value plot. If you clear Enable assertion, the bounds are not
used for assertion but continue to appear on the plot.

Settings

Default: Off

 On
Check that the singular value satisfies the specified lower bounds, during simulation.
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 Off
Do not check that the singular value satisfies the specified lower bounds, during
simulation.

Tips

• Clearing this parameter disables the upper bounds and the software stops checking
that the bounds are satisfied during simulation. The bound segments are also greyed
out in the plot window.

• If you specify both lower and upper singular value bounds but want to include only
the upper bounds for assertion, clear this parameter.

• To only view the bound on the plot, clear Enable assertion.

Command-Line Information
Parameter: EnableLowerBound
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”
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“Model Verification at Default Simulation Snapshot Time” on page 5-6

Frequencies (rad/sec)

Frequencies for one or more lower singular value bound segments, specified in radians/
sec.

Specify the corresponding magnitudes in Magnitude (dB).

Settings

Default []

Must be specified as start and end frequencies:

• Positive finite numbers for a single bound with one edge
• Matrix of positive finite numbers for a single bound with multiple edges

For example, type [0.01 0.1;0.1 1] to specify two edges with frequencies [0.01 0.1] and
[0.1 1].

• Cell array of matrices with positive finite numbers for multiple bounds.

Tips

• To assert that magnitude bounds that correspond to the frequencies are satisfied,
select both Include lower singular value bound in assertion and Enable
assertion.

• You can add or modify frequencies from the plot window:

• To add new frequencies, right-click the plot, and select Bounds > New Bound.
Select Lower gain limit in Design requirement type and specify the
frequencies in the Frequency column. Specify the corresponding magnitudes in
the Magnitude column.

• To modify the frequencies, drag the bound segment. Alternatively, right-click the
segment, and select Bounds > Edit Bound. Specify the new frequencies in the
Frequency column.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: LowerBoundFrequencies
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Type: string
Value: [] | positive finite numbers | matrix of positive finite numbers
| cell array of matrices with positive finite numbers. Must be specified
inside single quotes ('').
Default: '[]'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Magnitudes (dB)

Magnitude values for one or more lower singular value bound segments, specified in
decibels.

Specify the corresponding frequencies in Frequencies (rad/sec).

Settings

Default []

Must be specified as start and end magnitudes:

• Finite numbers for a single bound with one edge
• Matrix of finite numbers for a single bound with multiple edges

For example, type [0 0; 10 10] for two edges with magnitudes [0 0] and [10 10].
• Cell array of matrices with finite numbers for multiple bounds

Tips

• To assert that magnitudes are satisfied, select both Include lower singular value
bound in assertion and Enable assertion.

• You can add or modify magnitudes from the plot window:

• To add new magnitudes, right-click the plot, and select Bounds > New Bound.
Select Lower gain limit in Design requirement type, and specify the
magnitudes in the Magnitude column. Specify the corresponding frequencies in
the Frequency column.
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• To modify the magnitudes, drag the bound segment. Alternatively, right-click the
segment, and select Bounds > Edit Bound. Specify the new magnitudes in the
Magnitude column.

You must click Update Block before simulating the model.

Command-Line Information
Parameter: LowerBoundFrequencies
Type: string
Value: [] | finite number | matrix of finite numbers | cell array of
matrices with finite numbers. Must be specified inside single quotes ('').
Default: '[]'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Save data to workspace

Save one or more linear systems to perform further linear analysis or control design.

The saved data is in a structure whose fields include:

• time — Simulation times at which the linear systems are computed.
• values — State-space model representing the linear system. If the linear system is

computed at multiple simulation times, values is an array of state-space models.
• operatingPoints — Operating points corresponding to each linear system in

values. This field exists only if Save operating points for each linearization is
checked.

The location of the saved data structure depends upon the configuration of the Simulink
model:

• If the Simulink model is not configured to save simulation output as a single object,
the data structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the
data structure is a field in the Simulink.SimulationOutput object that contains
the logged simulation data.
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To configure your model to save simulation output in a single object, in the
Simulink editor, select Simulation > Model Configuration Parameters. In the
Configuration Parameters dialog box, in the Data Import/Export pane, check Save
Simulation output as single object.

For more information about data logging in Simulink, see “Export Simulation Data” and
the “Simulink.SimulationOutput class” reference page.

Settings

Default: Off

 On
Save the computed linear system.

 Off
Do not save the computed linear system.

Dependencies

This parameter enables Variable name.

Command-Line Information
Parameter: SaveToWorkspace
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Variable name

Name of the data structure that stores one or more linear systems computed during
simulation.

The location of the saved data structure depends upon the configuration of the Simulink
model:
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• If the Simulink model is not configured to save simulation output as a single object,
the data structure is a variable in the MATLAB workspace.

• If the Simulink model is configured to save simulation output as a single object, the
data structure is a field in the Simulink.SimulationOutput object that contains
the logged simulation data. The

The name must be unique among the variable names used in all data logging model
blocks, such as Linear Analysis Plot blocks, Model Verification blocks, Scope blocks, To
Workspace blocks, and simulation return variables such as time, states, and outputs.

For more information about data logging in Simulink, see “Export Simulation Data” and
the “Simulink.SimulationOutput class” reference page.

Settings

Default: sys

String.

Dependencies

Save data to workspace enables this parameter.

Command-Line Information
Parameter: SaveName
Type: string
Value: sys | any string. Must be specified inside single quotes ('').
Default: 'sys'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Save operating points for each linearization

When saving linear systems to the workspace for further analysis or control design, also
save the operating point corresponding to each linearization. Using this option adds
a field named operatingPoints to the data structure that stores the saved linear
systems.
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Settings

Default: Off

 On
Save the operating points.

 Off
Do not save the operating points.

Dependencies

Save data to workspace enables this parameter.

Command-Line Information
Parameter: SaveOperatingPoint
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Enable assertion

Enable the block to check that bounds specified and included for assertion in the Bounds
tab are satisfied during simulation. Assertion fails if a bound is not satisfied. A warning,
reporting the assertion failure, appears at the MATLAB prompt.

If assertion fails, you can optionally specify that the block:

• Execute a MATLAB expression, specified in Simulation callback when assertion
fails (optional).

• Stop the simulation and bring that block into focus, by selecting Stop simulation
when assertion fails.

For the Linear Analysis Plots blocks, this parameter has no effect because no
bounds are included by default. If you want to use the Linear Analysis Plots blocks
for assertion, specify and include bounds in the Bounds tab.
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Clearing this parameter disables assertion, i.e., the block no longer checks that specified
bounds are satisfied. The block icon also updates to indicate that assertion is disabled.

In the Configuration Parameters dialog box of the Simulink model, the Model
Verification block enabling option in the Debugging area of Data Validity node,
lets you to enable or disable all model verification blocks in a model, regardless of the
setting of this option.

Settings

Default: On

 On
Check that bounds included for assertion in the Bounds tab are satisfied during
simulation. A warning, reporting assertion failure, is displayed at the MATLAB
prompt if bounds are violated.

 Off
Do not check that bounds included for assertion are satisfied during simulation.

Dependencies

This parameter enables:

• Simulation callback when assertion fails (optional)
• Stop simulation when assertion fails

Command-Line Information
Parameter: enabled
Type: string
Value: 'on' | 'off'
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Default: 'on'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Simulation callback when assertion fails (optional)

MATLAB expression to execute when assertion fails.

Because the expression is evaluated in the MATLAB workspace, define all variables used
in the expression in that workspace.

Settings

No Default

A MATLAB expression.

Dependencies

Enable assertion enables this parameter.

Command-Line Information
Parameter: callback
Type: string
Value: '' | MATLAB expression
Default: ''

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Stop simulation when assertion fails

Stop the simulation when a bound specified in the Bounds tab is violated during
simulation, i.e., assertion fails.
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If you run the simulation from the Simulink Editor, the Simulation Diagnostics window
opens to display an error message. Also, the block where the bound violation occurs is
highlighted in the model.

Settings

Default: Off

 On
Stop simulation if a bound specified in the Bounds tab is violated.

 Off
Continue simulation if a bound is violated with a warning message at the MATLAB
prompt.

Tips

• Because selecting this option stops the simulation as soon as the assertion fails,
assertion failures that might occur later during the simulation are not reported. If you
want all assertion failures to be reported, do not select this option.

Dependencies

Enable assertion enables this parameter.

Command-Line Information
Parameter: stopWhenAssertionFail
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Output assertion signal

Output a Boolean signal that, at each time step, is:

• True (1) if assertion succeeds, i.e., all bounds are satisfied
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• False (1) if assertion fails, i.e., a bound is violated.

The output signal data type is Boolean only if the Implement logic signals as Boolean
data option in the Optimization pane of the Configuration Parameters dialog box of the
Simulink model is selected. Otherwise, the data type of the output signal is double.

Selecting this parameter adds an output port to the block that you can connect to any
block in the model.

Settings

Default:Off

 On
Output a Boolean signal to indicate assertion status. Adds a port to the block.

 Off
Do not output a Boolean signal to indicate assertion status.

Tips

• Use this parameter to design complex assertion logic. For an example, see “Model
Verification Using Simulink Control Design and Simulink Verification Blocks” on
page 5-25.

Command-Line Information
Parameter: export
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Show plot on block open

Open the plot window instead of the Block Parameters dialog box when you double-click
the block in the Simulink model.
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Use this parameter if you prefer to open and perform tasks, such as adding or modifying
bounds, in the plot window instead of the Block Parameters dialog box. If you want to

access the block parameters from the plot window, select Edit or click .

For more information on the plot, see Show Plot.

Settings

Default: Off

 On
Open the plot window when you double-click the block.

 Off
Open the Block Parameters dialog box when double-clicking the block.

Command-Line Information
Parameter: LaunchViewOnOpen
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Plot Linear Characteristics of Simulink Models During Simulation”

“Model Verification at Default Simulation Snapshot Time” on page 5-6

Show Plot

Open the plot window.

Use the plot to view:

• Linear system characteristics computed from the nonlinear Simulink model during
simulation

You must click this button before you simulate the model to view the linear
characteristics.
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You can display additional characteristics, such as the peak response time and
stability margins, of the linear system by right-clicking the plot and selecting
Characteristics.

• Bounds on the linear system characteristics

You can specify bounds in the Bounds tab of the Block Parameters dialog box or
right-click the plot and select Bounds > New Bound. For more information on
the types of bounds you can specify on each plot, see “Verifiable Linear System
Characteristics” on page 5-5 in the User's Guide.

You can modify bounds by dragging the bound segment or by right-clicking the plot
and selecting Bounds > Edit Bound. Before you simulate the model, click Update
Block to update the bound value in the block parameters.

Typical tasks that you perform in the plot window include:

•
Opening the Block Parameters dialog box by clicking  or selecting Edit.

•
Finding the block that the plot window corresponds to by clicking  or selecting
View > Highlight Simulink Block. This action makes the Simulink Editor active
and highlights the block.

• Simulating the model by clicking  or selecting Simulation > Run. This action
also linearizes the portion of the model between the specified linearization input and
output.

•
Adding legend on the linear system characteristic plot by clicking .

See Also

Check Singular Value Characteristics

Tutorials

• “Visualize Bode Response of Simulink Model During Simulation” on page 2-53
• “Visualize Linear System at Multiple Simulation Snapshots” on page 2-74
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• “Visualize Linear System of a Continuous-Time Model Discretized During Simulation”
on page 2-81

• Plotting Linear System Characteristics of a Chemical Reactor
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Trigger-Based Operating Point Snapshot
Generate operating points, linearizations, or both at triggered events

Library

Simulink Control Design

Description

Attach this block to a signal in a model when you want to take a snapshot of the system's
operating point at triggered events such as when the signal crosses zero or when the
signal sends a function call. You can also perform a linearization at these events. To
extract the operating point or perform the linearization, you need to simulate the model
using either the findop or linearize functions. Alternatively, you can interactively
export the operating point and linearize the model using the Linear Analysis Tool.

Choose the trigger type in the Block Parameters dialog box, as shown in the following
figure.

The possible trigger types are

• rising: the signal crosses zero while increasing.
• falling: the signal crosses zero while decreasing.
• either: the signal crosses zero while either increasing or decreasing.
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• function-call: the signal send a function call.

Note: Computing Operating Point Snapshots at Triggered Events illustrates how to use
this block.

See Also

findop, linearize
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Simulink Control Design Checks

Identify time-varying source blocks interfering with frequency response
estimation

Identify all time-varying source blocks in the signal path of any output linearization
point marked in the Simulink model.

Description

Frequency response estimation uses the steady-state response of a Simulink model
to a specified input signal. Time-varying source blocks in the signal path prevent the
response from reaching steady-state. In addition, when such blocks appear in the signal
path, the resulting response is not purely a response to the specified input signal. Thus,
time-varying source blocks can interfere with accurate frequency response estimation.

This check finds and reports all the time-varying source blocks which appear in the
signal path of any output linearization output points currently marked on the Simulink
model. The report:

• Includes blocks in subsystems and in referenced models that are in normal simulation
mode

• Excludes any blocks specified as BlocksToHoldConstant in the
frestimateOptions object you enter as the input parameter

For more information about the algorithm that identifies time-varying source blocks, see
the frest.findSources reference page.

Available with Simulink Control Design.

Input Parameters

FRESTIMATE options object to compare results against
Provide the paths of any blocks to exclude from the check. Specify the block
paths as an array of Simulink.BlockPath objects. This array is stored
in the BlocksToHoldConstant field of an option set you create with
frestimateOptions. See the frestimateOptions reference page for more
information.
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Results and Recommended Actions

Condition Recommended Action

Source blocks exist whose
output reaches linearization
output points currently marked
on the model.

Consider holding these source blocks constant during frequency
response estimation.

Use the frest.findSources command to identify time-
varying source blocks at the command line. Then use the
BlocksToHoldConstant option of frestimateOptions to pass
these blocks to the frestimate command. For example,

% Get linearization I/Os from the model.

mdl = 'scdengine';

io = getlinio(mdl);

% Find time-varying source blocks.

blks = frest.findSources(mdl,io); 

% Create options set with blocks to hold constant.

opts = frestimateOptions; 

opts.BlocksToHoldConstant = blks; 

% Run estimation with the options.

in = frest.Sinestream;

sysest = frestimate(mdl,io,in,opts); 

For more information and examples, see the
frest.findSources and frestimateOptions reference pages.

Tip

Sometimes, the model includes referenced models containing source blocks in the signal
path of an output linearization point. In such cases, set the referenced models to normal
simulation mode to ensure that this check locates them. Use the set_param command to
set SimulationMode of any referenced models to Normal before running the check.

See Also

• “Estimate Frequency Response Using Linear Analysis Tool”
• “Effects of Time-Varying Source Blocks on Frequency Response Estimation”
• frest.findSources reference page
• frestimateOptions reference page
• frestimate reference page
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